Skip to main content
Log in

Thermogravimetric analysis of carbonation behaviors of several potassium-based sorbents in low concentration CO2

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermogravimetric analysis is finding increasing utility in investigations of reaction paths and carbonation behaviors of CO2 sorbent. Potassium-based sorbents are currently suggested as new options for capturing CO2 from flue gas after combustion or removing CO2 from confined space, such as submarines, space crafts, and aircrafts. In this paper, K2CO3/AC, K2CO3/Al2O3, K2CO3/5A, K2CO3/13X, and K2CO3/SG were prepared with the impregnation of K2CO3 on activated carbon (AC), Al2O3, zeolite 5A, zeolite 13X, and silica aerogels (SG), respectively. The carbonation paths and behaviors of these sorbents in low temperature and CO2 concentration were revealed with TG. The carbonation conversions and average reaction rates were measured under different conditions by changing support material, temperature, CO2 concentration, and H2O concentration. The carbonation conversions for K2CO3/AC, K2CO3/Al2O3, K2CO3/5A, K2CO3/13X, and K2CO3/SG are 93.3, 67.3, 34.5, 60.0, and 10.1 %, respectively. The reaction paths of K2CO3/AC and K2CO3/SG are found out that the hydration reaction occurs first to form K2CO3·1.5H2O and K4H2(CO3)3·1.5H2O, then KHCO3 is produced rapidly. In the case of K2CO3/Al2O3, K2CO3/5A, and K2CO3/13X, a new phase of KAl(CO3)2(OH)2 is formed which requires a higher temperature of 350 °C to be decomposed. The carbonation conversions increase with the increase of the CO2 concentration and H2O concentration, but decrease with the increase of temperature. The average reaction rate increases when the aforementioned variables increase to a high value. The support material is the key factor that affects the carbonation conversion and average reaction rate. Choosing a proper support material is most important for obtaining enhanced CO2 capture capacity of potassium-based sorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Duan LB, Zhao CS, Zhou W, Liang C, Chen XP. Sulfur evolution from coal combustion in O2/CO2 mixture. J Anal Appl Pyrolysis. 2009;86:269–73.

    Article  CAS  Google Scholar 

  2. Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta. 2004;424:131–42.

    Article  CAS  Google Scholar 

  3. Yorulmaz SY, Atimtay AT. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Process Technol. 2009;90:939–46.

    Article  CAS  Google Scholar 

  4. Ren QQ. NOx and N2O precursors from co-pyrolysis of biomass and sludge. J Therm Anal Calorim. 2013;112:997–1002.

    Article  CAS  Google Scholar 

  5. Ren QQ. NOx and N2O precursors from biomass pyrolysis: effect of chlorine. J Therm Anal Calorim. 2014;115:881–5.

    Article  CAS  Google Scholar 

  6. Li YJ, Liu HL, Sun RY, Wu SM, Lu CM. Thermal analysis of cyclic carbonation behavior of CaO derived from carbide slag at high temperature. J Therm Anal Calorim. 2012;110:685–94.

    Article  CAS  Google Scholar 

  7. Li YJ, Zhao CS, Chen HC, Duan LB, Chen XP. CO2 capture behavior of shell during calcination/carbonation cycles. Chem Eng Technol. 2009;32:1176–82.

    Article  CAS  Google Scholar 

  8. Li YJ, Liu HL, Wu SM, Sun RY, Lu CM. Sulfation behavior of CaO from long-term carbonation/calcination cycles for CO2 capture at FBC temperatures. J Therm Anal Calorim. 2013;111:1335–43.

    Article  CAS  Google Scholar 

  9. Rouchon L, Favergeon L, Pijolat M. New kinetic model for the rapid step of calcium oxide carbonation by carbon dioxide. J Therm Anal Calorim. 2014;116:1181–8.

    Article  CAS  Google Scholar 

  10. Rouchon L, Favergeon L, Pijolat M. Analysis of the kinetic slowing down during carbonation of CaO by CO2. J Therm Anal Calorim. 2013;113:1145–55.

    Article  CAS  Google Scholar 

  11. Chrissafis K. Multicyclic study on the carbonation of CaO using different limestones. J Therm Anal Calorim. 2007;89:525–9.

    Article  CAS  Google Scholar 

  12. Li YJ, Wang WJ, Xie X, Sun RY, Wu SM. SO2 retention by highly cycled modified CaO-based sorbent in calcium looping process. J Therm Anal Calorim. 2014;116:955–62.

    Article  CAS  Google Scholar 

  13. Green DA, Turk BS, Gupta RP, Lopez-Ortiz A, Harrison DP, Liang Y. Carbon dioxide capture from flue gas using dry regenerable sorbents. Quarterly Technical Progress Report. Research Triangle Institute; May 2001.

  14. Green DA, Turk BS, Gupta RP, Lopez-Ortiz A, Harrison DP, Liang Y. Carbon dioxide capture from flue gas using dry regenerable sorbents. Quarterly Technical Progress Report. Research Triangle Institute; July 2001.

  15. Green DA, Turk BS, Gupta RP, Harrison DP, Liang Y. Carbon dioxide capture from flue gas using dry regenerable sorbents. Quarterly Technical Progress Report. Research Triangle Institute; October 2001.

  16. Green DA, Turk BS, Gupta RP, McMichael WJ, Harrison DP, Liang Y. Carbon dioxide capture from flue gas using dry regenerable sorbents. Quarterly Technical Progress Report. Research Triangle Institute; January 2002.

  17. Green DA, Turk BS, Portzer JW, Gupta RP, McMichael WJ, Liang Y, et al. Carbon dioxide capture from flue gas using dry regenerable sorbents. Quarterly Technical Progress Report. Research Triangle Institute; August 2003.

  18. Lee SC, Chae HJ, Lee SJ, Choi BY, Yi CK, Lee JB, Ryu CK, Kim JC. Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environ Sci Technol. 2008;42:2736–41.

    Article  CAS  Google Scholar 

  19. Lee SC, Chae HJ, Lee SJ, Park YH, Ryu CK, Yi CK, Kim JC. Novel regenerable potassium-based dry sorbents for CO2 capture at low temperatures. J Mol Catal B-Enzym. 2009;56:179–84.

    Article  CAS  Google Scholar 

  20. Lee SC, Kim JC. Dry potassium-based sorbents for CO2 capture. Catal Surv Asia. 2007;11:171–85.

    Article  CAS  Google Scholar 

  21. Lee SC, Choi BY, Lee TJ, Ryu CK, Ahn YS, Jim JC. CO2 absorption and regeneration of alkali metal-based solid sorbents. Catal Today. 2006;111:385–90.

    Article  CAS  Google Scholar 

  22. Yi CK, Jo SH, Seo YW, Park SD, Moon KH, Yoo JS, et al. CO2 capture characteristics of dry sorbents in a fast fluidized reactor. Stud Surf Sci Catal. 2006;159:501–4.

    Article  CAS  Google Scholar 

  23. Zhao CW, Chen XP, Zhao CS. Study on CO2 capture using dry potassium-based sorbents through orthogonal test method. Int J Greenh Gas Control. 2010;4:655–8.

    Article  CAS  Google Scholar 

  24. Zhao CW, Chen XP, Anthony EJ, Jiang X, Duan LB, Wu Y, Dong W, Zhao CS. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Prog Energy Combust. 2013;39:515–34.

    Article  Google Scholar 

  25. Xiao GK, Singh R, Chaffee A, Webley P. Advanced adsorbents based on MgO and K2CO3 for capture of CO2 at elevated temperatures. Int J Greenh Gas Control. 2011;5:634–9.

    Article  CAS  Google Scholar 

  26. Li L, Li Y, Wen X, Wang F, Zhao N, Xiao FK, Wei W, Sun YH. CO2 capture over K2CO3/MgO/Al2O3 dry sorbent in a fluidized bed. Energy Fuels. 2011;25:3835–42.

    Article  CAS  Google Scholar 

  27. Dutcher B, Fan MH, Leonard B, Dyar MD, Tang JK, Speicher EA, Liu P, Zhang YL. Use of nanoporous FeOOH as a catalytic support for NaHCO3 decomposition aimed at reduction of energy requirement of Na2CO3/NaHCO3 based CO2 separation technology. J Phys Chem C. 2011;115:15532–44.

    Article  CAS  Google Scholar 

  28. Dutcher B, Fan MH, Leonard B. Use of multifunctional nanoporous TiO(OH)2 for catalytic NaHCO3 decomposition-eventually for Na2CO3/NaHCO3 based CO2 separation technology. Sep Purif Technol. 2011;80:364–74.

    Article  CAS  Google Scholar 

  29. Zhang BT, Fan MH, Bland AE. CO2 separation by a new solid K − Fe sorbent. Energy Fuels. 2011;25:1919–25.

    Article  CAS  Google Scholar 

  30. Green DA, Turk BS, Portzer JW, Gupta RP, McMichael WJ, Nelson T, et al. Carbon dioxide capture from flue gas using dry regenerable sorbents. Quarterly Technical Progress Report. Research Triangle Institute; July 2004.

  31. Liang Y, Harrison DP, Gupta RP, Green DA, McMichael WJ. Carbon dioxide capture using dry sodium-based sorbents. Energy Fuels. 2004;18:569–75.

    Article  CAS  Google Scholar 

  32. Liang Y. Carbon dioxide capture from flue gas using regenerable sodium-based sorbents. A Thesis. Louisiana State: Louisiana State University;2003.

  33. Zhao CW, Guo YF, Li CH, Lu SX. Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents. Appl Energy. 2014;124:241–7.

    Article  CAS  Google Scholar 

  34. D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int Edit. 2010;49:6058–82.

    Article  Google Scholar 

  35. Green DA, Turk BS, Gupta RP, Portzer JW, McMichael W, Harrison D, Liang Y. Carbon dioxide capture from flue gas using dry regenerable sorbents. Quarterly Technical Progress Report April 2002, Research Triangle Institute.

  36. Lee DK, Min DY, Seo H, Kang NY, Choi WC, Park YK. Kinetic expression for the carbonation reaction of K2CO3/ZrO2 sorbent for CO2 capture. Ind Eng Chem Res. 2013;52:9323–9.

    Article  CAS  Google Scholar 

  37. Duan YH, Luebke, Pennline HW, Li B, Janik MJ, Halley JW. Ab initio thermodynamic study of the CO2 capture properties of potassium carbonate sesquihydrate, K2CO3·1.5H2O. J Phys Chem C. 2012;116:14461–70.

    Article  CAS  Google Scholar 

  38. Stanish M, Perlmutter D. Kinetics and transport effects in the dehydration of crystalline potassium carbonate hydrate. AIChE J. 1983;29:806–12.

    Article  CAS  Google Scholar 

  39. Zhao CW, Chen XP, Zhao CW, Wu Y, Dong W. K2CO3/Al2O3 for capturing CO2 in flue gas from power plants. Part 3: CO2 capture behaviors of K2CO3/Al2O3 in a bubbling fluidized-bed reactor. Energy Fuels. 2012;26:3062–8.

    Article  CAS  Google Scholar 

  40. Seo Y, Jo SH, Ryu HJ, Bae Dal H, Ryu CK, Yi CK. Effect of water pretreatment on CO2 capture using a potassium-based solid sorbent in a bubbling fluidized bed reactor. Korean J Chem Eng. 2007;24:457–60.

    Article  CAS  Google Scholar 

  41. Lee SC, Choi BY, Ryu CK, Ahn YS, Lee TJ, Kim JC. The effect of water on the activation and the CO2 capture capacities of alkali metal-based sorbents. Korean J Chem Eng. 2006;23:374–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 51206155) and Fundamental Research Funds for the Central Universities of China (WK2320000023) are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanwen Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zhao, C. & Li, C. Thermogravimetric analysis of carbonation behaviors of several potassium-based sorbents in low concentration CO2 . J Therm Anal Calorim 119, 441–451 (2015). https://doi.org/10.1007/s10973-014-4207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4207-3

Keywords

Navigation