Skip to main content
Log in

Crystallization mechanisms occurring in the Se–Te glassy system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Crystallization kinetics, studied under non-isothermal conditions in dependence on particle size, is reviewed for the Se–Te glassy system, with particular focus on occurring macroscopic crystallization mechanisms. The observed complexity of the crystallization processes is explained in terms of the two previously identified mechanisms—bulk crystallization originating from nuclei randomly distributed in the volume of each glass particle (formation of these nuclei is consistent with the classical nucleation theory) and crystallization from surface/volume active centers, dislocations, structural defects, and heterogeneities originating from the mechanical damage of the material (e.g., during grinding and milling). In addition, a new crystallization mechanism, previously unobserved in this system, was revealed for hyperquenched Se95Te5 glass. The origin of this mechanism is suggested to be closely associated with the stress-induced defects contained in the highly strained structure of this glass. The strong compositional dependence of the occurrence of this mechanism then seems to be caused by the high cooperativity of the amorphous structure of the specific composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Svoboda R, Krbal M, Málek J. Crystallization kinetics in Se–Te glassy system. J Non Cryst Sol. 2011;357:3123–9.

    Article  CAS  Google Scholar 

  2. Svoboda R, Málek J. Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta. 2011;526:237–51.

    Article  CAS  Google Scholar 

  3. Barták J, Svoboda R, Málek J. Electrical conductivity and crystallization kinetics in Te–Se glassy system. J Appl Phys. 2012;111:094908.

    Article  Google Scholar 

  4. Svoboda R, Málek J. Extended study of crystallization kinetics for Se–Te glasses. J Therm Anal Calorim. 2013;111:161–71.

    Article  CAS  Google Scholar 

  5. Svoboda R, Málek J. Applicability of Fraser-Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim. 2013;111:1045–56.

    Article  CAS  Google Scholar 

  6. Svoboda R, Málek J. Crystallization kinetics of a-Se, part 1: interpretation of kinetic functions. J Therm Anal Calorim. 2013;114:473–82.

    Article  CAS  Google Scholar 

  7. Svoboda R, Málek J. Crystallization kinetics of a-Se, part 2: deconvolution of a complex process—the final answer. J Therm Anal Calorim. 2013;115:81–91.

    Article  Google Scholar 

  8. Svoboda R, Málek J. Particle size influence on crystallization behavior of Ge2Sb2Se5 glass. J Non Cryst Sol. 2012;358:276–84.

    Article  CAS  Google Scholar 

  9. Svoboda R, Málek J. Description of macroscopic relaxation dynamics in glasses. J Non Cryst Solids. 2013;378:186–95.

    Article  CAS  Google Scholar 

  10. Svoboda R, Málek J. Enthalpy relaxation in Ge–Se glassy system. J Therm Anal Calorim. 2013;113:831–42.

    Article  CAS  Google Scholar 

  11. Svoboda R, Málek J. Structural relaxation in Se-rich As–Se glasses. J Non Cryst Solids. 2013;363:89–95.

    Article  CAS  Google Scholar 

  12. Šesták J. Thermophysical properties of solids, their measurements and theoretical analysis. Amsterdam: Elsevier; 1984.

    Google Scholar 

  13. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  14. Svoboda R, Málek J. Is the original Kissinger equation obsolete today? J Therm Anal Calorim. 2014;115:1961–7.

    Article  CAS  Google Scholar 

  15. Ryschenkow G, Faivre G. Bulk crystallization of liquid selenium. J Cryst Growth. 1988;87:221–35.

    Article  CAS  Google Scholar 

  16. Bisault J, Ryschenkow G, Faivre G. Spherulitic branching in the crystallization of liquid selenium. J Cryst Growth. 1991;110:889–909.

    Article  CAS  Google Scholar 

  17. Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.

    Article  Google Scholar 

  18. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  19. Avrami M. Kinetics of phase change I—general theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  20. Avrami M. Kinetics of phase change. II—transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;7:212–24.

    Article  Google Scholar 

  21. Avrami M. Granulation, phase change, and microstructure—kinetics of phase change III. J Chem Phys. 1941;7:177–84.

    Article  Google Scholar 

  22. Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min (Metall) Eng. 1939;135:416–42.

    Google Scholar 

  23. Perejón A, Sánchéz-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.

    Article  Google Scholar 

  24. Svoboda R, Honcová P, Málek J. Enthalpic structural relaxation in Te–Se glassy system. J Non Cryst Solids. 2011;357:2163–9.

    Article  CAS  Google Scholar 

  25. Svoboda R. Relaxation processes in selenide glasses: effect of characteristic structural entities. Acta Mater. 2013;61:4534–41.

    Article  CAS  Google Scholar 

  26. Kozyukhin SA. Anomalous mechanical properties of tellurium-modified glassy selenium. Neorg Mater. 2006;42:210–4.

    Article  CAS  Google Scholar 

  27. Venugopal RK, Bhatnagar AK. Electrical and optical studies on amorphous Se–Te alloys. J Phys D Appl Phys. 1992;25:1810–6.

    Article  Google Scholar 

  28. Zhao G, Zhao Y, Wang Y, Ji CJ. Ab initio molecular dynamics study of liquid Se30Te70: structural, electronic and dynamic properties. Phys Scr. 2010;82:035603.

    Article  Google Scholar 

  29. El-Korashy A, El-Zahed H, Radwan M, Abdalla AM. Influence of composition and heat treatment on the structure of Se–Te films. Thin Solid Films. 1995;261:328–33.

    Article  CAS  Google Scholar 

  30. Borisova ZU. Glassy semiconductors. New York: PlenumPress; 1981.

    Book  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Czech Science Foundation under project No. P106/11/1152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Svoboda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svoboda, R., Málek, J. Crystallization mechanisms occurring in the Se–Te glassy system. J Therm Anal Calorim 119, 155–166 (2015). https://doi.org/10.1007/s10973-014-4199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4199-z

Keywords

Navigation