Skip to main content
Log in

Flame spread over n-butanol at sub-flash temperature in normal and elevated altitude environments

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Comparative tests were conducted at normal (Hefei city, 50 m, 100 kPa) and elevated altitude (Lhasa city, 3,650 m, 64 kPa) on flame spread over sub-flash n-butanol surface. Flame height, flame pulsation frequency, flame spread rate, and subsurface convection flow size and temperature are quantified to find out their behavioral changes for these two altitudes. Results show that the flame is less luminous and lower soot production, while the flame height and flame pulsation frequency are larger at the elevated altitude. A theoretical deduction of fuel diffusion process based on Fick’s second law predicts that the flame pulsates more frequently at higher initial fuel temperature, which accords well with experimental results. The flame pulsation period can be well correlated with dimensionless initial fuel temperature by a semi-logarithmic fit, regardless of altitude. In addition, the flame propagates more rapidly in Lhasa, so that the fire hazard of the fuel leakage accident at the elevated altitude is greater than the normal counterpart. The variation trend of subsurface convection flow length is the inverse of initial fuel temperature at both altitudes. For a given initial fuel temperature, the subsurface convection flow temperature and size at the elevated altitude are smaller than those recorded at the normal altitude. The present findings provide a significant supplement over previous knowledge concerning liquid flame spread behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hu X, He Y, Li Z, Wang J. Combustion characteristics of n-heptane at high altitudes. Proc Combust Inst. 2011;33(2):2607–15. doi:10.1016/j.proci.2010.07.025.

    Article  CAS  Google Scholar 

  2. Zhang Y, Ji J, Huang X, Sun J. Effects of sample width on flame spread over horizontal charring solid surfaces on a plateau. Chin Sci Bull. 2011;56(9):919–24. doi:10.1007/s11434-011-4386-2.

    Article  Google Scholar 

  3. Liu Z, Guo C, Qian X, Li J, Liu X, Huang P. Experiment study on diesel flash point of different altitudes. In: Proceedings of 2008 (Shenyang) international colloquium on safety science and technology. Shenyang; 2008. pp. 157–161.

  4. Guo J, Lu S, Wang C. Study on the subsurface flow induced by flame spread over aviation kerosene. J Therm Anal Calorim. 2014;116(1):455–60. doi:10.1007/s10973-013-3547-8.

    Article  CAS  Google Scholar 

  5. Akita K. Some problems of flame spread along a liquid surface. Proc Combust Inst. 1973;14(1):1075–83. doi:10.1016/s0082-0784(73)80097-9.

    Article  Google Scholar 

  6. Degroote E. Control parameters of flame spreading in a fuel container. J Therm Anal Calorim. 2007;87(1):149–51. doi:10.1007/s10973-006-7838-1.

    Article  CAS  Google Scholar 

  7. Degroote E, Garcia-Ybarra PL. Flame propagation over liquid alcohols—part I. Experimental results. J Therm Anal Calorim. 2005;80(3):541–8. doi:10.1007/s10973-005-0735-1.

    Article  CAS  Google Scholar 

  8. Ross HD, Miller FJ. Understanding flame spread across alcohol pools. In: Curtat M, editor. Proceedings of the sixth international symposium; Poitiers, France: International Association for Fire Safety Science; 2000. pp. 77–94.

  9. Miller FJ, Ross HD, Kim I, Sirignano WA. Parametric investigations of pulsating flame spread across 1-butanol pools. Proc Combust Inst. 2000;28(2):2827–34. doi:10.1016/s0082-0784(00)80705-5.

    Article  CAS  Google Scholar 

  10. Degroote E, Garcia-Ybarra PL. Flame spreading over liquid ethanol. Eur Phys J B. 2000;13(2):381–6. doi:10.1007/s100510050045.

    Article  CAS  Google Scholar 

  11. Ito A, Masuda D, Saito K. A study of flame spread over alcohols using holographic interferometry. Combust Flame. 1991;83(3–4):375–89. doi:10.1016/0010-2180(91)90084-o.

    Article  CAS  Google Scholar 

  12. Plourde F, Patej S, Kim SD. Coupled effect of thermocapillarity and convection on flame spreading over a fuel liquid film. Combust Sci Technol. 2002;174(2):147–54. doi:10.1080/00102200290020930.

    Article  CAS  Google Scholar 

  13. Patej S, Plourde F, Kim SD, Hennequin D. Vortex structure in a liquid film in the pulsating flame spread regime. Eur Phys J B. 2002;140:131–40. doi:10.1051/epjap.

    Google Scholar 

  14. Cai J, Liu F, Sirignano WA. Three-dimensional structures of flames over liquid fuel pools. Combust Sci Technol. 2003;175(11):2113–39. doi:10.1080/714923188.

    Article  CAS  Google Scholar 

  15. Kim I, Schiller DN, Sirignano WA. Axisymmetric flame spread across propanol pools in normal and zero gravities. Combust Sci Technol. 1998;139(1):249–75. doi:10.1080/00102209808952090.

    Article  CAS  Google Scholar 

  16. Di Blasi C, Crescitelli S, Russo G. Model of oscillatory phenomena of flame spread along the surface of liquid fuels. Comput Method Appl Mech Eng. 1991;90(1–3):643–57. doi:10.1016/0045-7825(91)90176-7.

    Article  Google Scholar 

  17. Sirignano WA, Glassman I. Flame spreading above liquid fuels: Surface-tension-driven flows. Combust Sci Technol. 1970;1(4):307–12. doi:10.1080/00102206908952210.

    Article  CAS  Google Scholar 

  18. Glassman I, Hansel JG, Eklund T. Hydrodynamic effects in the flame spreading, ignitability and steady burning of liquid fuels. Combust Flame. 1969;13(1):99–101. doi:10.1016/0010-2180(69)90037-6.

    Article  CAS  Google Scholar 

  19. Ross HD. Ignition of and flame spread over laboratory-scale pools of pure liquid fuels. Prog Energ Combust. 1994;20(1):17–63. doi:10.1016/0360-1285(94)90005-1.

    Article  Google Scholar 

  20. De Ris JL, Wu PK, Heskestad G. Radiation fire modeling. Proc Combust Inst. 2000;28(2):2751–9. doi:10.1016/S0082-0784(00)80696-7.

    Article  Google Scholar 

  21. Ross HD, Miller FJ, Schiller DN, Sirignano WA. Flame spread across liquid pools. In: Ross HD, editor. 2nd International microgravity combustion workshop. Cleveland: NASA; 1993. pp. 257–264.

  22. Miller FJ, Ross HD. Further observations of flame spread over laboratory-scale alcohol pools. Proc Combust Inst. 1992;24(1):1703–11. doi:10.1016/s0082-0784(06)80199-2.

    Article  Google Scholar 

  23. Crank J. The mathematics of diffusion. 2ed ed. London: Clarendon Press; 1975.

    Google Scholar 

  24. Shepherd JE, Nuyt CD, Lee JJ, Woodrow JE. Flash point and chemical composition of aviation kerosene (Jet A). Pasadena: California Institute of Technology; 2000.

    Google Scholar 

  25. Rice OK. The effect of pressure on surface tension. J Chem Phys. 1947;15(5):333–5. doi:10.1063/1.1746507.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Project No. 51036007 and No. 51206157) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123402110048) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxiang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Lu, S., Guo, J. et al. Flame spread over n-butanol at sub-flash temperature in normal and elevated altitude environments. J Therm Anal Calorim 119, 401–409 (2015). https://doi.org/10.1007/s10973-014-4190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4190-8

Keywords

Navigation