Skip to main content
Log in

Thermal behavior of Li–Co-citric acid water-based gels as precursors for LiCoO2 powders

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work the thermal behavior of Li–Co-CA (citric acid) gels obtained by sol–gel method in aqueous media was studied. As reagents lithium and cobalt nitrates or acetates were used. The ultra-violet visible spectroscopic investigations indicate the formation of complex coordination gels in which Co(II) ion has an octahedral geometry. The Fourier-Transform Infrared spectroscopy suggests that the carboxyl groups provided by the citric acid act as bridging ligands for both studied gels. The obtained gels were analyzed by thermogravimetric and differential thermal analysis coupled with evolved gases analysis. A stepwise thermal decomposition of both types of gels was noticed with the evolution of different type of gases. These binary gels were comparatively investigated with the corresponding mono-metal-citric acid gels. The decomposition of both binary studied gels takes place up to 400 °C. Based on the thermal behavior of the complex gels, their annealing process was established. The binary gels thermally treated at 700 °C lead to single phase of lithium cobalt oxide (LiCoO2) powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pierre AC. Introduction to the sol-gel process, vol. 1. Boston: Kluwer Academic Publishers; 1998. p. 1–8.

    Google Scholar 

  2. Livage J, Henry M, Sanchez C. Sol-gel chemistry of transition metal oxides. Prog Solid State Chem. 1988;18:259–341.

    Article  CAS  Google Scholar 

  3. Sony lithium ion battery performance summary, JEC Batt. 1994:2.

  4. Wang QS, Sun JH, Chen CH, Zhou XM. Thermal properties and kinetics study of charged LiCoO2 by TG and C80 methods. J Therm Anal Calorim. 2008;92:563–6.

    Article  CAS  Google Scholar 

  5. Zheng J, Li X, Yu Y, Feng X, Zhao Y. Novel high phosphorus content phosphaphenanthrene-based efficient flame retardant additives for lithium-ion battery. J Therm Anal Calorim. 2014;117:319–24.

    Article  CAS  Google Scholar 

  6. Gummow RJ, Thackeray MM, David WIF, Hull S. Structure and electrochemistry of lithium cobalt oxide synthesized at 400°C. Mater Res Bull. 1992;27:327–37.

    Article  CAS  Google Scholar 

  7. Daheron L, Martinez H, Dedryvere R, Baraille I, Menetrier M, Denage C, Delmas C, Gonbeau D. Surface properties of LiCoO2 investigated by XPS analyses and theoretical calculations. J Phys Chem C. 2009;113:5843–52.

    Article  CAS  Google Scholar 

  8. Yu J, Han Z, Hu X, Zhan H, Zhou Y, Liu X. Solid-state synthesis of LiCoO2/LiCo0.99Ti0.01O2 composite as cathode material for lithium ion batteries. J Power Sources. 2013;225:34–9.

    Article  CAS  Google Scholar 

  9. Delobel B, Larcher D, Blach J-F, Croguennec L, Menetrier M, Simon E, Baudrin E. One-step precipitation of nanometric LiMO2 powders (M = Co, Fe) in alcoholic media. Solid State Ion. 2010;181:623–30.

    Article  CAS  Google Scholar 

  10. Predoana L, Barau A, Zaharescu M, Vassilchina H, Velinova N, Banov B, Momchilov A. Electrochemical properties of the LiCoO2 powder obtained by sol-gel method. J Eur Ceram Soc. 2007;27:1137–42.

    Article  CAS  Google Scholar 

  11. Fey GTK, Chen KS, Hwang BJ, Lin YL. High-resolution images of ultrafine LiCoO2 powders synthetized by a sol–gel process. J Power Sources. 1997;68:519–23.

    Article  CAS  Google Scholar 

  12. Szatvanyi A, Crisan M, Crisan D, Jitianu A, Stanciu L, Zaharescu M. LiCoO2 powders prepared by sol–gel method. Rev Rom Chim. 2002;47:1255–9.

    CAS  Google Scholar 

  13. Porthault H, Baddour-Hadjean R, Le Cras F, Bourbon C, Franger S. Raman study of the spinel-to-layered phase transformation in sol-gel LiCoO2 cathode powders as a function of the post-annealing temperature. Vib Spectrosc. 2012;62:152–8.

    Article  CAS  Google Scholar 

  14. Zhu CQ, Yang CH, Yang WD, Hsieh CY, Ysai HM, Chen YS. High performances of ultrafine and layered LiCoO2 powders for lithium batteries by a novel sol-gel process. J Alloy Comp. 2010;496:703–9.

    Article  CAS  Google Scholar 

  15. Soltanmohammad S, Asgari S. Characterization of LiCoO2 Nanopowders Produced by Sol-Gel Processing. J.Nanomater. 2010:04012.

  16. Khomane RB, Agrawal AC, Kulkarni BD, Gopukumar S, Sivashanmugam A. Preparation and electrochemical characterization of lithium cobalt oxide nanoparticles by modified sol-gel method. Mat Res Bull. 2008;43:2497–503.

    Article  CAS  Google Scholar 

  17. Yang WD, Hsieh CY, Chuang HJ, Chen YS. Preparation and characterization of nanometric-sized LiCoO2 cathode materials for lithium batteries by a novel sol–gel. Ceram Int. 2010;36:135–40.

    Article  CAS  Google Scholar 

  18. Kim DS, Lee CK, Kim H. Preparation of nano-sized LiCoO2 powder by the combination of sonication and modified Pechini process. Solid State Sci. 2010;2:45–9.

    Article  Google Scholar 

  19. Oh I-H, Hong S-A, Sun Y-K. Low-temperature preparation of ultrafine LiCoO2 powders by the sol–gel method. J Mat Sci. 1997;32:3177–82.

    Article  CAS  Google Scholar 

  20. Jo MK, Jeong S, Cho J. High power LiCoO2 cathode materials with ultra energy density for Li-ion cells. Electrochem Commun. 2010;12:992–5.

    Article  CAS  Google Scholar 

  21. Xie J, Huang X, Zhu Z, Dai J. Hydrothermal synthesis of LiNixCo1−xO2 cathode materials. Ceram Int. 2011;37:665–8.

    Article  CAS  Google Scholar 

  22. Kumar Bokinala K, Pollet M, Artemenko A, Miclau M, Grozescu I. Synthesis of lithium cobalt oxide by single-step soft hydrothermal method. J Solid State Chem. 2013;198:45–9.

    Article  CAS  Google Scholar 

  23. Chang SK, Kweon HJ, Kim BK, Jung DY, Kwon YU. Syntheses of LiCoO2 for cathode materials of secondary batteries from reflux reactions at 130–200°C. J Power Sources. 2002;104:125–31.

    Article  CAS  Google Scholar 

  24. Burukhin A, Brylev O, Hany P, Churagulov BR. Hydrothermal synthesis of LiCoO2 for lithium rechargeable batteries. Solid State Ion. 2002;151:259–63.

    Article  CAS  Google Scholar 

  25. Ou Y, Wen J, Xu H, Xie S, Li J. Ultrafine LiCoO2 powders derived from electrospun nanofibers for Li-ion batteries. J Phys Chem Solids. 2013;74:322–7.

    Article  CAS  Google Scholar 

  26. Jähne C, Klingeler R. Microwave-assisted hydrothermal synthesis of low-temperature LiCoO2. Solid State Sci. 2012;14:941–7.

    Article  Google Scholar 

  27. Patil V, Patil A, Choi J-W, Lee Y-P, Yoon YS, Kim H-J, Yoon S-J. LiCoO2 thin film cathodes grown by sol–gel method. J Electroceram. 2009;23:214–8.

    Article  CAS  Google Scholar 

  28. Predoana L, Malic B, Crisan D, Dragan N, Anastasescu M, Calderon-Moreno J, Scurtu R, Zaharescu M. LaCoO3 ceramics obtained from reactive powders. Ceram Int. 2012;38:5433–43.

    Article  CAS  Google Scholar 

  29. Predoana L, Jitianu A, Malic B, Zaharescu M. Study of the Gelling Process in the La-Co-Citric Acid System. J Am Ceram Soc. 2012;95:1068–76.

    CAS  Google Scholar 

  30. Predoana L, Malic B, Zaharescu M. LaCoO3 formation from precursors obtained by water-based sol–gel method with citric acid. J Therm Anal Calorim. 2009;98:361–6.

    Article  CAS  Google Scholar 

  31. Salahinejad E. Hadianfard MJ, Macdonald DD, Karimi I, Vashaee D, Tayebi L Aqueous sol–gel synthesis of zirconium titanate (ZrTiO4) nanoparticles using chloride precursors. Ceram Int. 2012;38:6145–9.

    Article  CAS  Google Scholar 

  32. Wang Z, Jiang S, Li G, Xi M, Li T. Synthesis and characterization of Ba1−xSrxTiO3 nanopowders by citric acid gel method. Ceram Int. 2007;33:1105–9.

    Article  CAS  Google Scholar 

  33. Hao Y, Lai Q, Liu D, Xu Z, Ji X. Synthesis by citric acid sol–gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery. Mat Chem Phys. 2005;94:382–7.

    Article  CAS  Google Scholar 

  34. Takahashi R, Sato S, Sodesawa T, Masanori Suzuki M, Ichikuni Nobuyuki. Ni/SiO2 prepared by sol–gel process using citric acid. Micropor Mesopor Mat. 2003;66:197–208.

    Article  CAS  Google Scholar 

  35. Delmon B. Preparation of heterogeneous catalysts synthesis of highly dispersed solids and their reactivity. J Therm Anal Calorim. 2007;90:49–65.

    Article  CAS  Google Scholar 

  36. Ali IO. Sol–gel synthesis of NiFe2O4 with PVA matrices and their catalytic activities for one-step hydroxylation of benzene into phenol. J Therm Anal Calorim. 2014;116:805–16.

    Article  CAS  Google Scholar 

  37. Szczygieł I, Winiarska K. Synthesis and characterization of manganese–zinc ferrite obtained by thermal decomposition from organic precursors. J Therm Anal Calorim. 2014;115:471–7.

    Article  Google Scholar 

  38. Singh S, Srivastava P, Kapoor IPS, Singh G. Preparation, characterization, and catalytic activity of rare earth metal oxide nanoparticles Part 84. J Therm Anal Calorim. 2013;111:1073–82.

    Article  CAS  Google Scholar 

  39. Lever ABP. Inorganic Electronic Spectroscopy. 2nd ed. New York: Elsevier; 1984.

    Google Scholar 

  40. Ferguson J, Wood TE. Electronic absorption spectra of tetragonal and pseudotetragonal cobalt(II). II. Cobalt chloride hexahydrate and cobalt chloride hexahydrate-d12. Inorg Chem. 1975;14:184–9.

    Article  CAS  Google Scholar 

  41. Tsai MT. Effects of hydrolysis processing on the character of forsterite gel fibers. Part I: preparation, spinnability and molecular structure. J Eur Ceram Soc. 2002;22:1073–83.

    Article  CAS  Google Scholar 

  42. Doeuff S, Henry M, Sanchez C, Livage J. Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid. J Non-Cryst Solids. 1987;89:206–16.

    Article  CAS  Google Scholar 

  43. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds Part B., applications in coordination, organometallic and bioinorganic chemistry. 6th ed. New-York: Wiley; 2009.

    Google Scholar 

  44. Deacon GB, Phillips RJ. Relationships between the carbon–oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coordin Chem Rev. 1980;33:227–50.

    Article  CAS  Google Scholar 

  45. Predoana L, Zaharescu M. Sol-Gel chemistry of the transitional metals in aqueous solution, in the sol-gel process, vol. 14. New york: Nova Publishers; 2011. p. 545–69.

    Google Scholar 

  46. Szatvanyi A, Crişan M, Zaharescu M, Jitianu A, Crişan D. WC powders obtained by sol-gel and coprecipitation methods. Rev Roum Chim. 2004;49:205–12.

    Google Scholar 

  47. Kim J, Fulmer P, Manthiram A. Synthesis of LiCoO2 cathodes by an oxidation reaction in solution and their electrochemical properties. Mater Res Bull. 1999;34:571–9.

    Article  CAS  Google Scholar 

  48. Antolini E, Ferretti M. Synthesis and thermal stability of LiCoO2. J Solid State Chem. 1995;117:1–7.

    Article  CAS  Google Scholar 

  49. Yuan X, Liu H, Zhang J. (2011) Green chemistry and chemical engineering Lithium-ion batteries advanced materials and technology Edited by CRC Press Taylor & Francis Group cap 2 Cathode materials for lithium-ion batteries.

Download references

Acknowledgements

The support of the EU (ERDF) and Romanian Government that allowed for acquisition of the research infrastructure (XRD) under POS-CCE O 2.2.1 project INFRANANOCHEM—Nr. 19/01.03.2009, is gratefully acknowledged. Barbara Malic acknowledges the financial support of the Slovenian Research Agency (P2-0105). Ms. Jena Cilenšek is acknowledged for performing the thermal analyses of the studied materials. The authors thank Dr. Cornel Munteanu from “Ilie Murgulescu” Institute of Physical Chemistry for the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Jitianu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Predoana, L., Jitianu, A., Preda, S. et al. Thermal behavior of Li–Co-citric acid water-based gels as precursors for LiCoO2 powders. J Therm Anal Calorim 119, 145–153 (2015). https://doi.org/10.1007/s10973-014-4178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4178-4

Keywords

Navigation