Skip to main content
Log in

A new baseline for the Newtonian thermal analysis of casting: two-capacitive system baseline

Modeling the effects of the thermal capacity of mold

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Computer-aided cooling curve thermal analysis for the casting process is usually applied to predict the latent heat of transformation and the solid fraction. In this study, one of the important limitations of the Newtonian thermal analysis for the prediction of the latent heat was determined as the disregard of the thermal capacity of mold. Therefore, a new baseline technique, two-capacitive system baseline (TCSBL), was developed by taking the thermal capacity of the mold into account. This new method was modeled by considering the analogy between RC circuits and the metal–mold thermal capacitance system. It was improved by a Taylor series expansion approach to express the cooling rates in terms of the metal and mold temperatures. Ten experiments with four types of pure metals were undertaken to compare the latent heat results of TCSBL with the Newtonian and Dynamic Baselines (NBL and DBL). The mean percentage error for the latent heat prediction of TCSBL, NBL, and DBL were calculated as 4.3, 29, and 24 %, respectively, in comparison with the literal value of the latent heats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim. 2002;68(2):335–57.

  2. Liang SM, Chena RS, Blandin JJ, Suery M, Hana EH. Thermal analysis and solidification pathways of MgAlCa system alloys. Mater Sci Eng. 2008;480:365–72.

    Article  Google Scholar 

  3. Strezov V, Lucas JA, Strezov L. Computer aided thermal analysis. J Therm Anal Calorim. 2003;72(3):907–18.

    Article  CAS  Google Scholar 

  4. Emadi D, Whiting LV, Nasi S, Ghomashchi R. Applications of thermal analysis in quality control of solidification processes. J Therm Anal Calorim. 2005;81:235–42.

    Article  CAS  Google Scholar 

  5. Sharma BL, Lal P, Sharma M, Sharma AK. Thermoanalysis of binary condensed eutectic phases evincing molecular interactions. J Therm Anal Calorim. 2012;109(1):447–56.

    Article  CAS  Google Scholar 

  6. Malekan M, Dayani D, Mir A. Thermal analysis study on the simultaneous grain refinement and modification of 380.3 aluminum alloy. J Therm Anal Calorim. 2013;115:393–9.

    Article  Google Scholar 

  7. Farahany S, Ourdjini A, Idris M. The usage of computer-aided cooling curve thermal analysis to optimise eutectic refiner and modifier in Al–Si alloys. J Therm Anal Calorim. 2012;109(1):105–11.

    Article  CAS  Google Scholar 

  8. Petrovi DS, Pirnat M, Klannik G, Mrvar P, Medved J. The effect of cooling rate on the solidification and microstructure evolution in duplex stainless steel. J Therm Anal Calorim. 2012;109(3):1185–91.

    Article  Google Scholar 

  9. Mahfoud M, Rao AKP, Emadi D. The role of thermal analysis in detecting impurity levels during aluminum recycling. J Therm Anal Calorim. 2010;100(3):847–51.

    Article  CAS  Google Scholar 

  10. Djurdjevic MB, Sokolowski JH, Odanovich Z. Determination of dendrite coherency point characteristics using first derivative curve versus temperature. J Therm Anal Calorim. 2012;109:875–82.

    Article  CAS  Google Scholar 

  11. Çetin A, Kalkanli A. Evaluation of latent heat of solidification of grey cast iron from cooling curves. Can Metall q. 2005;44(1):1–6.

    Article  Google Scholar 

  12. Emadi D, Whiting LV, Djurdjevic M, Kierkus WT, Sokolowski J. Comparison of Newtonian and Fourier thermal analysis techniques for calculation of latent heat and solid fraction of aluminium alloys. Metalurgija-MjoM. 2004;10(2):91–106.

    Google Scholar 

  13. Gibbs JW, Mendez PF. Solid fraction measurement using equation-based cooling curve analysis. Scripta Materialia. 2008;58:699702.

    Article  Google Scholar 

  14. Marchwica P, Sokolowski JH, Kierkus WT. Fraction solid evolution characteristics of AlSiCu alloys-dynamic baseline approach. J Achiev Mater Manuf Eng. 2011;47:116.

    Google Scholar 

  15. Malekan M, Shabestari SG. Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys. J Therm Anal Calorim. 2010;103(2):453–8.

    Article  Google Scholar 

  16. Fima P, Gazda A. Thermal analysis of selected SnAgCu alloys. J Therm Anal Calorim. 2013;112(2):731–7.

    Article  CAS  Google Scholar 

  17. Carlson KD, Beckermann C. Determination of solid fractiontemperature relation and latent heat using full scale casting experiments: application to corrosion resistant steels and nickel based alloys. Int J Cast Met Res. 2012;25(2):75–92.

  18. Djurdjevic M, Jiang H, Sokolowski J. On-line prediction of aluminum-silicon eutectic modification level using thermal analysis. Mater Charact. 2001;46(1):31–8.

    Article  CAS  Google Scholar 

  19. Hou DH, Liang SM, Chen RS, Han EH, Dong C. Thermal analysis during solidification of Mg-4%.wt Al Alloy during lost foam casting process. Mater Sci Forum. 2011;686:371–7.

    Article  CAS  Google Scholar 

  20. Loizaga A, Niklas A, Fernandez-Calvo AI, Lacaze J. Thermal analysis applied to estimation of solidification kinetics of AlSi aluminum alloys. Int J Cast Met Res. 2009;22(5):345–52.

    Article  CAS  Google Scholar 

  21. Farahany S, Ourdjini A, Idris MH, Shabestari SG. Computer aided cooling curve thermal analysis of near eutectic Al–Si–Cu–Fe alloy. J Therm Anal Calorim. 2013;103:453–8.

    Google Scholar 

  22. Fras E, Kapturkiewicz W. A new concept in thermal analysis of castings. AFS Trans. 1993;101:505511.

    Google Scholar 

  23. Dioszegi A, Svensson IL. On the problems of thermal analysis of solidification. Mater Sci Eng. 2005;413–414:474479.

    Google Scholar 

  24. Shin JS, Lee ZH. Computer-aided cooling curve analysis of A356 aluminum alloy. Met Mater Int. 2004;10(1):89–96.

    Article  Google Scholar 

  25. Holman JP. Heat transfer. 6th ed. New York: McGraw-Hill; 1992.

    Google Scholar 

  26. Vollmer M. Newtons law of cooling revisited. Eur J Phys. 2009;30:10631084.

    Article  Google Scholar 

  27. Poirier DR, Poirier EJ. Heat transfer fundamentals for metal casting. 2nd ed. Warrendale: TMS; 1994.

    Google Scholar 

  28. Incropera FP. Fundamentals of heat and mass transfer. 7th ed. New York: Wiley; 2011.

    Google Scholar 

  29. Shan Q, Schubert EF. Thermal model of packaged LEDs and RC circuit analogue. 2014. http://www.ecse.rpi.edu/schubert/Course-Teaching-modules/. Accessed 24 Jun 2014.

  30. Boyce WE, Diprima RC. Elementary differential equations and boundary value problems. 7th ed. New York: Wiley; 2001.

    Google Scholar 

  31. Chao LS, Du WC. Macro–micro modeling of solidification. Proc Nat Sci Counc. 1999;23(5):622–9.

    CAS  Google Scholar 

  32. Perry RH, Green DW. Perry’s chemical engineers’ handbook. 7th ed. New York: McGraw-Hill; 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Can Erbaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbaş, K.C. A new baseline for the Newtonian thermal analysis of casting: two-capacitive system baseline. J Therm Anal Calorim 119, 183–189 (2015). https://doi.org/10.1007/s10973-014-4143-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4143-2

Keywords

Navigation