Skip to main content
Log in

An analytical model for solidification of undercooled metallic melts

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A model has been proposed for describing the solidification of undercooled metallic melts, on the basis that the solidification is considered as the sum of a liquid/solid cooling process without latent heat release and a latent heat releasing process without cooling. Application of the model to undercooled solidification of nickel, cobalt, zirconium, and Al–11.3Si–2Cu–0.4Fe alloy samples shows good fits to the temperature curves, and the fitting results of solid fraction curves are consistent with that from the available methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Levi CG, Mehrabian R. Heat flow in atomized metal droplets. Metall Trans B. 1980;11B:21–7.

    Article  CAS  Google Scholar 

  2. Levi CG, Mehrabian R. Heat flow during rapid solidification of undercooled metal droplets. Metall Trans A. 1982;13A:221–34.

    Article  CAS  Google Scholar 

  3. Barth M, Joo F, Wei B, Herlach DM. Measurement of the enthalpy and specific heat of undercooled nickel and iron melts. J Non Cryst Solids. 1993;156–158:398–401.

    Article  Google Scholar 

  4. Çetin A, Kalkanli A. Evaluation of latent heat of solidification of gray cast iron from cooling curves. Can Metal Quart. 2005;44:1–6.

    Article  Google Scholar 

  5. Vedovato G, Zambon A, Ramous E. A simplified model for gas atomization. Mater Sci Eng A. 2001;304–306:235–9.

    Article  Google Scholar 

  6. Stefanescu DM, Upadhya G, Bandyopadhyay D. Heat transfer-solidification kinetics modeling of solidification of castings. Metall Trans. 1990;21A:997–1005.

    Article  CAS  Google Scholar 

  7. Malekan M, Shabestari SG. Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys. J Therm Anal Calorim. 2011;103:453–8.

    Article  CAS  Google Scholar 

  8. Farahany S, Ourdjini A, Idris MH. The usage of computer-aided cooling curve thermal analysis to optimise eutectic refiner and modifier in Al–Si alloys. J Therm Anal Calorim. 2012;109:105–11.

    Article  CAS  Google Scholar 

  9. Emadi D, Whiting L, Djurdjevic M, Kierkus WT, Sokolowski J. Comparison of Newtonian and Fourier thermal analysis techniques for calculation of latent heat and solid fraction of aluminum alloys. Metal J Metal. 2004;10:91–106.

    Google Scholar 

  10. Gibbs JW, Kaufman MJ, Hackenberg RE, Mendez PF. Cooling curve analysis to determine phase fractions in solid-state precipitation reactions. Metall Mater Trans. 2010;41A:2216–23.

    Article  CAS  Google Scholar 

  11. Gibbs JW, Mendez PF. Solid fraction measurement using equation-based cooling curve analysis. Scr Mater. 2008;58:699–702.

    Article  CAS  Google Scholar 

  12. Saleh AM, Clemente RA. A simple model for solidification of undercooled metallic samples. Jpn J Appl Phys. 2004;43:3624–8.

    Article  CAS  Google Scholar 

  13. Fras E, Lopez HF. An analytical model for nodular eutectic grain predictions during solidification. Metall Mater Trans B. 1999;30:927–32.

    Article  Google Scholar 

  14. Rappaz M. Modelling of microstructure formation in solidification process. Int Mater Rev. 1989;34:93–124.

    Article  CAS  Google Scholar 

  15. Koseki T. Undercooling and rapid solidification of Fe–Cr–Ni ternary alloys. PhD thesis, Massachusetts Institute of Technology, USA, 1994. p. 95–7.

  16. Grong O, Dahle AK, Onsoien MI, Arnberg L. Analytical modelling of equiaxed solidification. Acta Mater. 1998;46:5045–52.

    Article  CAS  Google Scholar 

  17. Wang JR. A mathematical interpretation of Dirac δ function. Appl Math Mech. 1981;2:361–4.

    Article  Google Scholar 

  18. Gandin Ch-A, Mosbah S, Volkmann Th, Herlach DM. Experimental and numerical modeling of equiaxed solidification in metallic alloys. Acta Mater. 1998;46:5045–52.

    Article  Google Scholar 

  19. Christian JW. The theory of transformation in metals and alloys, equilibrium and general kinetics theory. 2nd ed. Oxford: Pergamon Press; 2002. p. 16–21.

    Google Scholar 

  20. Herlach DM. Non-equilibrium solidification of undercooled metallic melts. Mater Sci Eng R. 1994;12:177–272.

    Article  Google Scholar 

  21. Rahman MS, Guizani N, Al-Khaseibi M, AI-Hinai SA, AI-Maskri SS, AI-Hamhami K. Analysis of cooling curve to determine the end point of freezing. Food Hydrocoll. 2002;16:653–9.

    Article  CAS  Google Scholar 

  22. Farahany S, Ourdjini A, Idris MH, Shabestari SG. Computer-aided cooling curve thermal analysis of near eutectic Al–Si–Cu–Fe alloy. J Therm Anal Calorim. 2013;114:705–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Basic Research Program of China (973 Program, No. 2011CB610403, 2011CB632904), the Natural Science Foundation of China (Nos. 51101122, 51134011, 51301125, 51371133 and 51401156), the 111 project (No. B08040), the President Fund of Xi’an Technological University (XAGDXJJ1307), and the Fund of Shaanxi Province Thin Film Technology and Optical Test Open Key Laboratory (ZSKJ201403), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2014JM6225). J.F. Xu thanks C.Y. Hu, J.W. Xu, Y.H. Jiang, K. Wang, X.L. Xu, and S.B. Li for their help in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J.F., Liu, F., Zhang, D. et al. An analytical model for solidification of undercooled metallic melts. J Therm Anal Calorim 119, 273–280 (2015). https://doi.org/10.1007/s10973-014-4089-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4089-4

Keywords

Navigation