Skip to main content
Log in

Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate the effect of different cooling rates on the microstructure and solidification parameters of 2024 aluminum alloy. Solidification characteristics are recognized from the cooling curve and its first and second derivative curves which have been plotted using thermal analysis technique. In this study, a mold having high cooling rate was designed and used to simulate the direct-chill casting process. The results of thermal analysis show that the characteristic parameters of Al2024 alloy are influenced by cooling rate. The cooling rates used in the present study range from 0.4 to 17.5 °C s−1. Increasing the cooling rate affects the undercooling parameters both in liquidus and eutectic solidification regions. Investigations showed that solidification parameters such as nucleation temperature, recalescence undercooling temperature, and range of solidification temperature are influenced by variation of cooling rates. Microstructural evaluation was carried out to present the correlation between the cooling rate and dendrite arm spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kaufman JG. Introduction to aluminum alloys and tempers. 1st ed. Materials Park: ASM International; 2000.

    Google Scholar 

  2. Kissell JR, Ferry RL. Aluminum structures. 2nd ed. New York: Wiley; 2002.

    Google Scholar 

  3. Nadella R, Eskin DG, Du Q, Katgerman L. Macrosegregation in direct-chill casting of aluminum alloys. Prog Mater Sci. 2008;53:421–80.

    Article  CAS  Google Scholar 

  4. Eskin DG. Physical metallurgy of direct chill casting of aluminum alloys. 1st ed. Boca Raton: Taylor & Francis Group; 2008.

    Book  Google Scholar 

  5. Djurdjevic MB, Huber G, Odanovic Z. Synergy between thermal analysis and simulation. J Therm Anal Calorim. 2013;111:1365–73.

    Article  CAS  Google Scholar 

  6. Emadi D, Whiting LV, Nafisi S, Ghomashchi R. Applications of thermal analysis in quality control of solidification processes. J Therm Anal Calorim. 2005;81:235–42.

    Article  CAS  Google Scholar 

  7. Brown ME, Gallagher PK. Handbook of thermal analysis and calorimetry, vol. 5. 1st ed. Amsterdam: Elsevier B.V; 2008.

    Google Scholar 

  8. Malekan M, Shabestari SG. Computer aided cooling curve thermal analysis used to predict the quality of aluminum alloys. J Therm Anal Calorim. 2010;103:453–8.

    Article  Google Scholar 

  9. Backerud L, Sigworth GK. Recent development in thermal analysis of aluminum casting alloys. AFS Trans. 1989;97:459–64.

    Google Scholar 

  10. Mahfoud M, Prasada Rao AK, Emadi D. The role of thermal analysis in detecting impurity levels during aluminum recycling. J Therm Anal Calorim. 2010;100:847–51.

    Article  CAS  Google Scholar 

  11. Backerud L, Krol E, Tamminen J. Solidification characteristics of aluminum alloys, vol. 1. 1st ed. Oslo: Skan Aluminum; 1986.

    Google Scholar 

  12. Flemings MC. Solidification processing. 1st ed. New York: McGraw-Hill; 1974.

    Google Scholar 

  13. Apelian D, Sigworth GK, Whaler KR. Assessment of grain refinement and modification of Al–Si foundry alloys by thermal analysis. AFS Trans. 1984;91:297–307.

    Google Scholar 

  14. Kurz W, Fisher DJ. Fundamentals of solidification. 3rd ed. Aedermannsdorf: Trans Tech Publication Ltd; 1989.

    Google Scholar 

  15. Cruz KS, Meza ES, Fernandes FAP, Quaresma JMV, Casteletti LC, Garcia A. Dendrite arm spacing affecting mechanical properties and wear behavior of Al–Sn and Al–Si alloys directionally solidified under unsteady-state conditions. Metall Mater Trans A. 2010;41:972–84.

    Article  Google Scholar 

  16. Flemings MC, Kattamis TZ, Bardes BP. Dendrite arm spacing in aluminum alloys. AFS Trans. 1991;99:501–6.

    CAS  Google Scholar 

  17. Easton M, Davidson C, StJohn D. Effect of alloy composition on the dendrite arm spacing of multicomponent aluminum alloys. Metall Mater Trans A. 2010;41:1528–38.

    Article  Google Scholar 

  18. Gloria D, Gruzleski JE. Time as a control parameter in determination of grain size of 319 Al–Si–Cu foundry alloy. AFS Trans. 1999;107:419–24.

    CAS  Google Scholar 

  19. Dedavid BA, Costa EM, Ferreira CR. A study of precipitates formation in AA 380.0 aluminum alloys modified by the addition of magnesium. J Therm Anal Calorim. 2002;67:473–80.

    Article  CAS  Google Scholar 

  20. Farahany S, Ourdjini A, Idris MH, Shabestari SG. Computer-aided cooling curve thermal analysis of near eutectic Al–Si–Cu–Fe alloy. J Therm Anal Calorim. 2013;114:705–17.

    Article  CAS  Google Scholar 

  21. Shabestari SG, Malekan M. Thermal analysis study of the effect of the cooling rate on the microstructure and solidification parameters of 319 aluminum alloy. Can Metall Q. 2005;44:305–12.

    Article  CAS  Google Scholar 

  22. Mackay RI, Djurdjevic MB, Sokolowski JH. Effect of cooling rate on fraction solid of metallurgical reactions in 319 alloy. AFS Trans. 2000;108:521–30.

    CAS  Google Scholar 

  23. Shabestari SG, Malekan M. Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis. J Alloys Compd. 2010;492:134–42.

    Article  CAS  Google Scholar 

  24. Gowri S, Samuel FH. Effect of cooling rate on the solidification behavior of Al-7 Pct Si-SiCp metal–matrix composites. Met Trans A. 1992;23:3369–76.

    Google Scholar 

  25. Porter DA, Easterling KE. Phase transformation in metals and alloys. 2nd ed. London: Chapman & Hall; 1991.

    Google Scholar 

  26. Shewmon PG. Diffusion in solids. 1st ed. New York: McGraw-Hill; 1963.

    Google Scholar 

  27. Hosseini VA, Shabestari SG, Gholizadeh R. Study of the cooling rate on the solidification parameters, microstructure, and mechanical properties of LM13 alloy using cooling curve thermal analysis technique. Mater Des. 2013;50:7–14.

    Article  CAS  Google Scholar 

  28. Malekan M, Dayani D, Mir A. Thermal analysis study on the simultaneous grain refinement and modification of 380.3 aluminum alloy. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-3189-x.

    Google Scholar 

  29. Charbonnier J. Microprocessor assisted thermal analysis testing of aluminum alloy structures. AFS Trans. 1984;92:907–22.

    CAS  Google Scholar 

  30. Gowri S. Comparison of thermal analysis parameters of 356 and 359 alloys. AFS Trans. 1994;102:503–8.

    CAS  Google Scholar 

  31. McCartney DJ, Hunt JD. Measurements of cell and primary dendrite arm spacing in directionally solidified aluminum alloys. Acta Metall. 1981;29:1851–63.

    Article  CAS  Google Scholar 

  32. Young KP, Kirkwood DH. The dendrite arm spacing of aluminum–copper alloys solidified under steady-state conditions. Metall Trans A. 1975;6:197–205.

    Article  CAS  Google Scholar 

  33. Sivarupan T, Caceres CH, Taylor JA. Alloy composition and dendrite arm spacing in Al–Si–Cu–Mg–Fe alloys. Metall Mater Trans A. 2013;44:4071–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. M. Malekan for his assistance. Also, they would like to acknowledge the Center of Excellence for High Strength Alloys Technology (CEHSAT) of Iran University of Science and Technology (IUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Shabestari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoncheh, M.H., Shabestari, S.G. & Abbasi, M.H. Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique. J Therm Anal Calorim 117, 1253–1261 (2014). https://doi.org/10.1007/s10973-014-3867-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3867-3

Keywords

Navigation