Skip to main content
Log in

Grafting polypropylene and treatment of calcium carbonate to improve structure and properties of polypropylene composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, calcium carbonate was chemically treated with two kinds of dicarboxylic acids before compounding with polypropylene in the presence of dicumyl peroxide (DCP). It was observed that the mixture of dicarboxylic acids could improve the crystallization and impact strength properties of calcium carbonate/polypropylene composite. With further addition of DCP, more PP-g-MA was produced in the blend, resulting in PP composites with larger β-phase content and improved mechanical properties. In the experiments, the maximum K β value of 52.0 % was obtained. The elongation at break of composite increased from 252 % for PP composite with untreated calcium carbonate to 444 % for PP composite with chemically treated calcium carbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhidan L, et al. Preparation, structures and properties of shell/polypropylene biocomposites. Thermochim Acta. 2013;551:149–54.

    Article  Google Scholar 

  2. Enescu D, Frache A, Gualtieri G. Combustion behavior of polypropylene-based composites used in industrial plasticollar. Abingdon: Taylor and Francis Ltd; 2013.

    Google Scholar 

  3. Gahleitner M, Grein C, Bernreitner K. Synergistic mechanical effects of calcite micro- and nanoparticles and -nucleation in polypropylene copolymers. Eur Polymer J. 2012;48(1):49–59.

    Article  CAS  Google Scholar 

  4. Nevalainen K, et al. Characterization of melt-compounded and masterbatch-diluted polypropylene composites filled with several fillers. Polym Compos. 2013;34(4):554–69.

    Article  CAS  Google Scholar 

  5. Zhang Z, et al. Synergistic effects of toughening of nano-CaCO3 and toughness of -polypropylene. Compos A. 2012;43(1):189–97.

    Article  Google Scholar 

  6. Zixian G, Zhidan L, Kancheng M. Monetaria moneta as a novel β-nucleating agent for isotactic polypropylene. Compos Sci Technol. 2013;87:58–63.

    Article  Google Scholar 

  7. Castillo LA, Barbosa SE, Capiati NJ. Influence of talc morphology on the mechanical properties of talc filled polypropylene. J Polym Res. 2013;. doi:10.1007/s10965-013-0152-2.

    Google Scholar 

  8. Pollanen M, et al. Morphological, mechanical, tribological, and thermal expansion properties of organoclay reinforced polyethylene composites. Polym Eng Sci. 2013;53(6):1279–86.

    Article  Google Scholar 

  9. Nevalainen K, et al. Characterization of twin-screw-extruder-compounded polycarbonate nanoclay composites. Polym Eng Sci. 2009;49(4):631–40.

    Article  CAS  Google Scholar 

  10. Toro P, et al. Influence of grafted polypropylene on the mechanical properties of mineral-filled polypropylene composites. J Appl Polym Sci. 2007;103(4):2343–50.

    Article  CAS  Google Scholar 

  11. Zhidan L, et al. Crystallization and melting behavior of polypropylene in β-PP/polyamide 6 blends containing PP-g-MA. J Ind Eng Chem. 2013;19(2):692–7.

    Article  Google Scholar 

  12. Miyauchi K, Yuasa M. A study of adhesive improvement of a Cr–Ni alloy layer on a polyimide surface by low pressure gas plasma modification. Prog Org Coat. 2013;76(11):1536–42.

    Article  CAS  Google Scholar 

  13. Chen MH, et al. Microstructure changes of polyimide/MMT-AlN composite hybrid films under corona aging. Appl Surf Sci. 2012;263:302–6.

    Article  CAS  Google Scholar 

  14. Fernandez M, Alba MD, Torres RM. Sanchez, Effects of thermal and mechanical treatments on montmorillonite homoionized with mono- and polyvalent cations: insight into the surface and structural changes. Colloids Surf A. 2013;423:1–10.

    Article  CAS  Google Scholar 

  15. Kamal M, et al. Calcium carbonate (CaCO3) nanoparticle filled polypropylene: effect of particle surface treatment on mechanical, thermal, and morphological performance of composites. J Appl Polym Sci. 2012;124(4):2649–56.

    Article  CAS  Google Scholar 

  16. Borysiak S. Supermolecular structure of wood/polypropylene composites: i. the influence of processing parameters and chemical treatment of the filler. Polym Bull. 2010;64(3):275–90.

    Article  CAS  Google Scholar 

  17. Diaz MF, Barbosa SE, Capiati NJ. Improvement of mechanical properties for PP/PS blends by in situ compatibilization. Polymer. 2005;46(16):6096–101.

    Article  CAS  Google Scholar 

  18. Kock C, et al. Polypropylene/polyethylene blends as models for high-impact propylene-ethylene copolymers, part 2: relation between composition and mechanical performance. J Appl Polym Sci. 2013;130(1):287–96.

    Article  CAS  Google Scholar 

  19. Mishra S, Chatterjee A. Effect of nano-polystyrene (nPS) on thermal, rheological, and mechanical properties of polypropylene (PP). Polym Adv Technol. 2011;22(12):1547–54.

    Article  CAS  Google Scholar 

  20. Meng M-R, Dou Q. Effect of filler treatment on crystallization, morphology and mechanical properties of polypropylene/calcium carbonate composites. J Macromol Sci Part B. 2009;48(2):213–25.

    Article  CAS  Google Scholar 

  21. Li L, Dou Q. Effect of malonic acid treatment on crystal structure, melting behavior, morphology, and mechanical properties of isotactic polypropylene/nano-CaCO3 composites. J Macromol Sci Part B Phys. 2011;50(5):831–45.

    Article  CAS  Google Scholar 

  22. Nava DP, et al. Induction of phase nucleated polypropylene using a CaCO3 micrometer in industrial conditions. In: 19th International Materials Research Congress 2010, 15 Aug 2010–19 Aug 2010. Cancun: Materials Research Society; 2010.

  23. Varga J, Mudra I, Ehrenstein GW. Highly active thermally stable beta-nucleating agents for isotactic polypropylene. J Appl Polym Sci. 1999;74(10):2357–68.

    Article  CAS  Google Scholar 

  24. Varga J, Mudra I, Ehrenstein GW. Crystallization and melting of beta-nucleated isotactic polypropylene. J Therm Anal Calorim. 1999;56(3):1047–57.

    Article  CAS  Google Scholar 

  25. Turner-Jones A, Aizlewood J, Beckett D. Crystalline forms of isotactic polypropylene. Macromol Chem Phys. 1964;75:134–58.

    Article  CAS  Google Scholar 

  26. Karger-Kocsis J, et al. Instrumented tensile and falling mass impact response of injection-molded α- and β-phase polypropylene homopolymers with various melt flow indices. J Appl Polym Sci. 1999;73(7):1205–14.

    Article  CAS  Google Scholar 

  27. Karger-Kocsis J, Varga J. Effects of β‐α transformation on the static and dynamic tensile behavior of isotactic polypropylene. J Appl Polym Sci. 1996;62(2):291–300.

    Article  CAS  Google Scholar 

  28. Karger-Kocsis J, Varga J, Ehrenstein GW. Comparison of the fracture and failure behavior of injection-molded α- and β-polypropylene in high-speed three-point bending tests. J Appl Polym Sci. 1997;64(11):2057–66.

    Article  CAS  Google Scholar 

  29. Tjong SC, Shen JS, Li RKY. Impact fracture toughness of β-form polypropylene. Scr Metall Mater. 1995;33(3):503.

    Article  CAS  Google Scholar 

  30. Tjong SC, Shen JS, Li RKY. Morphological behaviour and instrumented dart impact properties of β-crystalline-phase polypropylene. Polymer. 1996;37(12):2309–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Project was supported by Natural Science Foundation of China and Project of Science (Grant No. 21101076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidan Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Cao, L., Guan, Z. et al. Grafting polypropylene and treatment of calcium carbonate to improve structure and properties of polypropylene composites. J Therm Anal Calorim 117, 765–772 (2014). https://doi.org/10.1007/s10973-014-3824-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3824-1

Keywords

Navigation