Skip to main content
Log in

Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics?

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

The Original Article was published on 30 October 2013

Abstract

Physical meaning of activation energy is analyzed from the viewpoint of non-isothermal kinetic evaluation. The term of heat inertia, meaning the degree of slowness with which the temperature of a body approaches that of its surroundings, is examined, and its impact on activation energy determination is discussed, which is particularly functional for a DTA peak kinetic appraisal. Impact of a process equilibrium background on kinetics is recollected as specifically important for Kissinger kinetic evaluation distinguishing competent case of glass cold crystallization on heating but unsuitable for melt crystallization on cooling without introducing additional thermodynamic terms. Parallel to non-Arrhenian kind of kinetics, an analogous model-free description is advocated accentuating a generalized approach by logistic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Svoboda R, Málek J. Is the original Kissinger equation obsolete today? J Therm Anal Calorim. 2014. doi:10.1007/s10973-013-3486-4.

    Google Scholar 

  2. Kissinger HE. Variation of peak temperature with heating rate in DTA. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  3. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  4. Šesták J. Invited lecture: The errors of kinetic data obtained under increasing temperature at the International Symposium on Thermal Analysis, London, April, 1965.

  5. Koga N, Šesták J. Kinetic compensation effect as a mathematical consequence of the exponential rate constant. Thermochim Acta. 1991;182:201–8.

    Article  CAS  Google Scholar 

  6. Koga N. A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta. 1994;244:1–20.

    Article  CAS  Google Scholar 

  7. Galwey AK. Brown ME application of the Arrhenius equation to solid-state kinetics: can this be justified? Thermochim Acta. 2002;386:91–8.

    Article  CAS  Google Scholar 

  8. Šesták J. NATAS/TA award lecture: Rational approach to the study of processes by thermal analysis. In: Buzas I, editor. Thermal analysis, 4th ICTA in Budapest, vol. 3. Budapest: Academia Kyado; 1974. p. 1.

    Google Scholar 

  9. Holba P, Nevřiva M, Šesták J. Analysis of DTA curve and related calculation of kinetic data using computer technique. Thermochim Acta. 1978;23:223–31.

    Article  CAS  Google Scholar 

  10. Svoboda H, Šesták J. A new approach to DTA peak calibration by introducing a predetermined amount of Joule heat. In: Buzas I, editor. Thermal analysis, proceedings. 4th ICTA, vol. 3. Budapest: Akademia Kiado; 1974. p. 726–31.

    Google Scholar 

  11. Holba P, Šesták J, Sedmidubský D. In: Šesták J, Šimon P, editors. Heat transfer and phase transition at DTA experiments. Chapter 5 in book thermal analysis of Micro-, nano- and non-crystalline materials. Berlin: Springer; 2013. p. 99–134.

    Google Scholar 

  12. Šesták J, Holba P. Heat inertia and temperature gradient in the treatment of DTA peaks: existing on every occasion of real measurements but until now omitted. J Thermal Anal Calorim. 2013;113:1633–43.

    Article  Google Scholar 

  13. Holba P, Šesták J. Kinetics with regard to the equilibrium of processes studied by non-isothermal techniques. Zeit Phys Chem NF. 1972;80:1–20.

    Article  CAS  Google Scholar 

  14. Mianowski A. Consequences of Holba–Sestak equation. J Thermal Anal Calorim. 2009;96:507–13.

    Article  CAS  Google Scholar 

  15. Holba P. Equilibrium background of processes initiated by heating and the Ehrenfest classification of phase transitions. In: Šesták J, Šimon P, editors. Thermal analysis of micro-, nano- and non-crystalline materials. Springer., Berlin 2013. p. 29–52.

  16. Šesták J. Invited lecture: Integration of nucleation-growth equation when considering nonisothermal regime, equilibrium background and the impact of phase separation. In: Dollimore D, editor. The 2nd ESTAC in Aberdeen 1980, Thermal analysis. London: Heyden; 1981.

    Google Scholar 

  17. Šesták J, Kratochvíl J. Rational approach to thermodynamic processes and constitutive equation in iso- and non-iso-thermal kinetics. J Thermal Anal. 1973;5:153.

    Google Scholar 

  18. Šesták J. Philosophy of non-isothermal kinetics. J Thermal Anal. 1979;16:520–603.

    Google Scholar 

  19. Šesták J. Nonisothermal kinetics: art, debate or applied science? J Thermal Anal. 1988;33:1263–5.

    Article  Google Scholar 

  20. Šesták J. ICTA/TA award lecture: thermal treatment and analysis: the art of nonequilibrium studies. At the 10th ICTA in Salford, UK 1990.

  21. Šesták J, editor. Reaction kinetics by thermal analysis: special issue of Thermochim. Acta, vol. 202. Amsterdam: Elsevier; 1992.

    Google Scholar 

  22. Šesták J. Plenary lecture: Some historical aspects of thermal analysis: origins of TERMANAL, CALCON and ICTA, in Termanal 2005. In: Klein E, Smrčková E, Šimon P, editors, Proceedings of XVII Conference on thermal analysis in Stara lesná. Publishing house of the Slovak Technical University, Bratislava; 2005. p. 3–17.

  23. Šesták J. Plenary lecture: rationale and fallacy of thermoanalytical kinetic patterns: how we model subject matter, CEEC-TAC in Craiova, September 2011. J Thermal Anal Calor. 2012;110:5–16.

    Article  Google Scholar 

  24. Murray P, White J. Kinetics of the thermal decomposition of clays: interpretation of DTA to thermal analysis of clays. Trans Br Ceram Soc. 1955;54:204–37.

    CAS  Google Scholar 

  25. Flynn JH, Wall LA. General kinetic treatment of the thermogravimetry of polymers. J Res Nat Bur Stand A. 1966;70:487.

    Article  CAS  Google Scholar 

  26. Šesták J. Review of kinetic data evaluation from nonisothermal and isothermal data. Silikáty (Prague). 1967;11:153–90.

    Google Scholar 

  27. Augis JA, Bennet JE. Calculation of Avrami parameters for heterogeneous solid-state reactions using a modification of Kissinger method. J Thermal Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  28. Budrugeac P, Segal E. Applicability of the Kissinger equation in thermal analysis. J Therm Anal Calorim. 2007;88:703–7.

    Article  CAS  Google Scholar 

  29. Llópiz J, Romero MM, Jerez A, Laureiro Y. Generalization of the Kissinger equation for several kinetic models. Thermochim Acta. 1995;256:205–11.

    Article  Google Scholar 

  30. Koga N, Criado JM. Application of the Kissinger method to solid-state reactions with a particle size distribution. J Min Met. 1999;35:171–85.

    CAS  Google Scholar 

  31. Avramov I, Šesták J. Generalized kinetics of overall phase transition explicit to crystallization. J Thermal Anal Calor, in print 2014.

  32. Šesták J, Holba P, Lombardi G. Quantitative evaluation of thermal effects: theory and practice. Ann Chim (Roma). 1977;67:73–87.

    Google Scholar 

  33. Zholkov YuA. Thermal inertia of thermocouples. Meas Tech. 1961;4:983–5.

    Article  Google Scholar 

  34. Rabin Y, Rittel D. Model for the time response of solid-embedded. thermocouples. Exp Mech. 1999;39:1–5.

    Article  Google Scholar 

  35. Price JC. Thermal inertia mapping: a new view of the Earth. J Geophys Res. 1977;82:2582–90.

    Article  Google Scholar 

  36. Cracknel AP, Xue Y. Thermal inertia determination—a tutorial review. Int J Remote Sens. 1996;17:431–61.

    Article  Google Scholar 

  37. Williams-Leir G. Effective thermal inertia in relation to normalized heat load. Fire Mater. 1984;8:77–80.

    Article  Google Scholar 

  38. Mowrer FW. Analysis of effective thermal properties of thermally thick materials. Report of National Institute of Standards and Technology, GCR 03-855, Gaithersburg 2003.

  39. Wikipedia—the free encyclopedia: http://en.wikipedia.org/wiki/Volumetric_heat_capacity (2014).

  40. Vold MJ. Differential thermal analysis. Anal Chem. 1949;21:683–8.

    Article  CAS  Google Scholar 

  41. Blumberg AA. DTA and heterogeneous kinetics: the reactions of vitreous silica with HF. J Phys Chem. 1959;63:1129.

    Article  CAS  Google Scholar 

  42. Šesták J. Theory and practice of differential thermal analysis, Chapter 12 in his book: thermophysical properties of solids: theoretical thermal analysis. Elsevier, Amsterdam; 1984. pp. 303–339. Russian translation, Mir, Moscow 1988.

  43. Chen R, Kirsh Y. Analysis of thermally stimulated processes. Oxford: Pergamum; 1981. p. 109–10.

    Google Scholar 

  44. Boerio-Goates J, Callen JE. In: Rossiter BW, Beatzold RC, editors. Differential thermal methods. Chapter 8 in book: determination of thermodynamic properties. New York: Wiley; 1992. p. 621–718.

    Google Scholar 

  45. Šesták J. Thermometry and calorimetry, Chapter 12 in book: science of heat and thermophysical studies: a generalized approach to thermal analysis. Amsterdam: Elsevier; 2005. p. 344–76.

    Google Scholar 

  46. Smyth HT. Temperature distribution during mineral inversion and its significance in DTA. J Am Ceram Soc. 1951;34:221–4.

    Article  CAS  Google Scholar 

  47. Lyon RE, Safronova N, Senese J, Stoliarov SI. Thermokinetic model of sample thermal response in nonisothermal analysis. Thermochim Acta. 2012;545:82–9.

    Article  CAS  Google Scholar 

  48. Šesták J, Holba P, Živkovič Ž. Doubts on Kissinger´s method of kinetic evaluation based on several conceptual models showing the difference between the maximum of reaction rate and the extreme of a DTA. J Min Met B. 2014;50:77–81. doi:10.2298/JMMB130902006S

  49. Holba P, Šesták J. Imperfections of Kissinger evaluation method and crystallization kinetics. Glass physics and chemistry, by Russian Fizika i Khimiya Stekla, in print 2014.

  50. Vyazovkin S. Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun. 2002;23:771–5.

    Article  CAS  Google Scholar 

  51. Galwey AK. What it meant by the term ‘variable activation energy’ when applied in the kinetic analysis of solid state decompositions ? Thermochim Acta. 2003;397:49–268.

    Article  Google Scholar 

  52. Galwey AK. What theoretical and/or chemical significance is to be attached to the magnitude of an activation energy determined for a solid-state decomposition? J Therm Anal Calorim. 2006;86:267–86.

    Article  CAS  Google Scholar 

  53. Vyazovkin S. On the phenomenon of variable activation energy for condensed phase reactions. New J Chem. 2000;24:913.

    Article  CAS  Google Scholar 

  54. Svoboda R, Málek J. Glass transition in polymers: (in)correct determination of activation energy. Polymer. 2013;54:1504–11.

    Article  CAS  Google Scholar 

  55. Málek J, Mitsuhashi T, Criado JM. Kinetic analysis of solid-state processes. J Mater Res. 2001;16:1682–871.

    Article  Google Scholar 

  56. Šesták J. Modeling of reaction mechanism: use of Euclidian and fractal geometry, Chapter 10 in his book: science of heat and thermophysical studies: a generalized approach to thermal analysis. Elsevier, Amsterdam; 2005. p. 276–314.

  57. Koga N, Šesták J, Šimon P. In: Šesták J, Šimon P, editors. Some fundamental and historical aspects of phenomenological kinetics in solid-state studied by thermal analysis. Chapter 1 in book: Thermal analysis of Micro-, nano- and non-crystalline materials. Berlin: Springer; 2013. p. 1–45. ISBN 978-90-481-3149-5.

    Google Scholar 

  58. Kopelman R. Fractal reaction kinetics. Science. 1988;241:1620–6.

    Article  CAS  Google Scholar 

  59. Šimon P. Forty years of the Šesták–Berggren equation. Thermochim Acta. 2011;520:15–156.

    Google Scholar 

  60. Šesták J. Diagnostic limits of phenomenological kinetic models when introducing an accommodation function. J Therm Anal. 1991;36:1997.

    Google Scholar 

  61. Šimon P. Single-step kinetics approximation employing non-Arrhenius temperature functions. J Therm Anal Calorim. 2005;79:703–8.

    Article  Google Scholar 

  62. Málek J, Šesták J, Rouquerol F, Rouquerol J, Criado JM, Ortega A. A possibilities of two non-isothermal procedures (temperature- or rate- controlled) for kinetic studies. J Thermal Anal. 1992;38:71–87.

    Article  Google Scholar 

  63. Galwey AK. Is the science of thermal analysis kinetics based on solid foundations? A literature appraisal. Thermochim Acta. 2004;413:139–83.

    Article  CAS  Google Scholar 

  64. Galwey AK. Theory of solid-state thermal decomposition reactions: scientific stagnation or chemical catastrophe? An alternative approach appraised and advocated. J Therm Anal Calorim. 2012;109:1625–35.

    Article  CAS  Google Scholar 

  65. L’vov BV, Galwey AK. Toward a general theory of heterogeneous reactions: a thermochemical approach. J Therm Anal Calorim. 2013;113:561–8.

    Article  Google Scholar 

  66. Škvára F, Šesták J. Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method. J Thermal Anal Calor. 1975;8:477–89.

  67. Piloyan GO, Ryabchikov IO, Novikova SO. Determination of activation energies of chemical reactions by DTA. Nature. 1966;3067:1229.

  68. Mouchina E, Kaisersberger E. Temperature dependence of the time constants for deconvolution of heat flow curves. Thermochim Acta. 2009;492:101–9.

Download references

Acknowledgements

The results were developed within the CENTEM project, Reg. No. CZ.1.05/2.1.00/03.0088, that is co-funded from the ERDF inside the OP RDI program of the Ministry of Education, Youth, and Sports. Deep thanks are due to my colleague Pavel Holba who is an inexhaustible source of ideas, wisdom, and companionship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Šesták.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šesták, J. Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics?. J Therm Anal Calorim 117, 3–7 (2014). https://doi.org/10.1007/s10973-014-3810-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3810-7

Keywords

Navigation