Skip to main content
Log in

Toward a general theory of heterogeneous reactions

Thermochemical approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermochemical approach, using the quasi-equilibrium methodology of kinetic analysis and the concepts of equimolar and isobaric reaction modes (regimes), has been used to prove the common mechanism of the representative heterogeneous reactions: decompositions of CaCO3 and of Ag2O, reduction of NiO by H2, and the catalytic oxidation of CO and H2 on PtO2. All these rate processes have been analyzed using the congruent dissociative vaporization of the participating solid reactants or catalysts and are described by similar mechanistic schemes. The possible role of atomic oxygen evolution in oxidation catalysis is discussed. Quantitative proofs of the common mechanism of these reactions were provided by agreement between calculated reaction enthalpies and the Arrhenius E parameters, the retardation effect of gaseous products on the reaction rates, and the accordance between experimental and theoretical ratios of isobaric to equimolar values of the E parameter. In conclusion, milestones in the history of the thermochemical approach during the last century are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. L’vov BV. The mechanism of the thermal decomposition of metal nitrates in graphite furnaces for atomic absorption analysis. Zh Anal Khim. 1990;45:2144–53 (in Russian).

    Google Scholar 

  2. L’vov BV. Evaporation, thermal dissociation, carbothermal reduction and thermal decomposition of substances. A general approach to the theoretical calculation of kinetics. Book of abstracts, Invited lecture at XXVII CSI, Bergen; 1991, p. A-52.

  3. L’vov BV. Thermal decomposition of solids and melts, new thermochemical approach to the mechanism, kinetics and methodology. Berlin: Springer; 2007.

    Book  Google Scholar 

  4. L’vov BV. Thermochemical approach to solid-state decomposition reactions against the background of traditional theories. J Therm Anal Calorim. 2009;96:487–93.

    Article  Google Scholar 

  5. L’vov BV. The mechanism of solid-state decompositions in a retrospective. J Therm Anal Calorim. 2010;101:1175–82.

    Article  Google Scholar 

  6. L’vov BV. Theory of solid-state decomposition reactions: a historical essay. Spectrochim Acta B. 2011;66:557–64.

    Article  Google Scholar 

  7. Volmer M. Über Keimbildung und Keimwirkung als Spezialfalle der heterogenen Katalyse. Z Elektrochem. 1929;35:555–61.

    CAS  Google Scholar 

  8. Schwab G-M. Katalyse vom Standpunkt der chemischen Kinetik. Berlin: Springer; 1931.

    Book  Google Scholar 

  9. L’vov BV, Ryabchuk GN. Studies of the mechanisms of sample atomization in electrothermal atomic absorption spectrometry by analysis of absolute process rates. Oxygen-containing compounds. Zh Anal Khim. 1981;36:2085–96 (in Russian).

    Google Scholar 

  10. L’vov BV, Fernandez GHA. Regularities in thermal dissociation of oxides in graphite furnaces for atomic absorption analysis. Zh Anal Khim. 1984;39:221–31 (in Russian).

    Google Scholar 

  11. L’vov BV. Kinetics and mechanism of thermal decomposition of silver oxide. Thermochim Acta. 1999;333:13–9.

    Article  Google Scholar 

  12. L’vov BV, Galwey AK. The mechanism and kinetics of NiO reduction by hydrogen: thermochemical approach. J Therm Anal Calorim. doi: 10.1007/s10973-011-2000-0.

  13. L’vov BV, Galwey AK. Catalytic oxidation of CO on platinum: thermochemical approach. J Therm Anal Calorim. doi:10.1007/s10973-012-2241-6.

  14. L’vov BV, Galwey AK. Catalytic oxidation of hydrogen on platinum: thermochemical approach. J Therm Anal Calorim. doi: 10.1007/s10973-012-2567-0.

  15. Bodenstein M, Fink CG. Heterogene katalytische Reaktionen. Allgemeine Bemerkungen. Z Phys Chem. 1907;60:46–69.

    CAS  Google Scholar 

  16. Langmuir I. Chemical reactions on surfaces. Trans Faraday Soc. 1922;17:607–20.

    Article  Google Scholar 

  17. Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans Faraday Soc. 1922;17:621–54.

    Article  Google Scholar 

  18. Mitani K, Harano Y. Evolution of atomic oxygen from platinum surface treated previously with discharged oxygen gas. Bull Chem Soc Jpn. 1960;33:276.

    Article  CAS  Google Scholar 

  19. Mitani K, Asakura Y. Detection of the atomic oxygen evolved in the decomposition of some metallic oxides. Bull Chem Soc Jpn. 1965;38:901–4.

    Article  CAS  Google Scholar 

  20. L’vov BV, Novichikhin AV. Quantitative interpretation of the evaporation coefficients for the decomposition or sublimation of some substances in vacuo. Thermochim Acta. 1997;290:239–51.

    Article  Google Scholar 

  21. L’vov BV. Kinetics and mechanism of thermal decomposition of mercuric oxide. Thermochim Acta. 1999;333:21–6.

    Article  Google Scholar 

  22. L’vov BV, Ugolkov VL, Grekov FF. Kinetics and mechanism of free-surface vaporization of zinc, cadmium and mercury oxides analyzed by the third-law method. Thermochim Acta. 2004;411:187–93.

    Article  Google Scholar 

  23. Royer S, Duprez D. Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem. 2011;3:24–65.

    Article  CAS  Google Scholar 

  24. Langmuir I. The vapour pressure of metallic tungsten. Phys Rev. 1913;2:329–42.

    Article  Google Scholar 

  25. Langmuir I. The constitution and fundamental properties of solids and liquids. J Am Chem Soc. 1916;38:2221–95.

    Article  CAS  Google Scholar 

  26. Langmuir I. The evaporation of small spheres. Phys Rev. 1918;12:368–70.

    Article  CAS  Google Scholar 

  27. Mars P, van Krevelen DW. Oxidations carried out by means of vanadium oxide catalysts. Chem Eng Sci. 1954;3:41–57.

    Article  CAS  Google Scholar 

  28. Pease RN, Taylor HS. The reduction of copper oxide by hydrogen. J Am Chem Soc. 1921;43:2179–88.

    Article  CAS  Google Scholar 

  29. Pease RN, Taylor HS. The catalytic formation of water vapor from hydrogen and oxygen in the presence of copper and copper oxide. J Am Chem Soc. 1922;44:1637–47.

    Article  CAS  Google Scholar 

  30. Okayama J. Versuche über den autokatalytischen Verlauf bei Bildung und Reduktion des CuO. Z Elektrochem. 1928;34:294–8.

    CAS  Google Scholar 

  31. L’vov BV. Atomic absorption spectral analysis. Moscow: Nauka; 1966. (in Russian).

    Google Scholar 

  32. L’vov BV. Atomic absorption spectrochemical analysis. London: Adam Hilger; 1970.

    Google Scholar 

  33. Johnson DC, Sharp BL, West TS, Dagnall RM. Some observations on the vaporization and atomization of samples with a carbon filament atomizer. Anal Chem. 1975;47:1234–40.

    Article  CAS  Google Scholar 

  34. Sturgeon RE, Chakrabarti CL, Langford CH. Studies on the mechanism of atom formation in graphite furnace atomic absorption spectrometry. Anal Chem. 1976;48:1792–807.

    Article  CAS  Google Scholar 

  35. L’vov BV. Electrothermal atomization—the way toward absolute methods of atomic absorption analysis. Spectrochim Acta B. 1978;33:153–93.

    Article  Google Scholar 

  36. L’vov BV, Bayunov PA, Ryabchuk GN. A macrokinetic theory of sample vaporization in electrothermal atomic absorption spectrometry. Spectrochim Acta B. 1981;36:397–425.

    Article  Google Scholar 

  37. Sturgeon RE, Mitchell DF, Berman SS. Atomization of lead in graphite furnace atomic absorption spectrometry. Anal Chem. 1983;55:1059–64.

    Article  CAS  Google Scholar 

  38. Bass DA, Holcombe JA. Mass spectral investigation of mechanisms of lead vaporization from a graphite furnace used in electrothermal atomizers. Anal Chem. 1987;59:974–80.

    Article  CAS  Google Scholar 

  39. Dressler MS, Holcombe JA. Mass spectral and atomic absorption studies of selenium vaporization from a graphite surface. Spectrochim Acta B. 1987;42:981–94.

    Article  Google Scholar 

  40. Wang P, Majidi V, Holcombe JA. Copper atomization mechanisms in graphite furnace atomizers. Anal Chem. 1989;61:2652–8.

    Article  CAS  Google Scholar 

  41. L’vov BV, Novichikhin AV. Mechanism of thermal decomposition of anhydrous metal nitrates. Spectrochim Acta B. 1995;50:1427–48.

    Article  Google Scholar 

  42. L’vov BV, Novichikhin AV. Mechanism of thermal decomposition of hydrated copper nitrate in vacuo. Spectrochim Acta B. 1995;50:1459–68.

    Article  Google Scholar 

  43. Chorkendorff I, Niemantsverdriet JW. Concepts of modern catalysis and kinetics. Weinheim: Wiley-VCH Verlag GmbH; 2007.

    Google Scholar 

  44. Somorjai GA, Li Y. Impact of surface chemistry. PNAS. 2011;108:917–24.

    Article  CAS  Google Scholar 

  45. Nilius N, Risse T, Schauermann S, Shaikhutdinov S, Sterrer M, Freund H-J. Model studies in catalysis. Top Catal. 2011;54:4–12.

    Article  CAS  Google Scholar 

  46. Liu L, Qiao B, Zhou F, Yang B, Deng Y. Catalytic co-oxidation of CO and H2 over FeOx-supported Pd catalyst at low temperatures. J Catal. 2012;294:29–36.

    Article  CAS  Google Scholar 

  47. Doherty RP, Krafft J-M, Mèthivier C, Casale S, Remita H, Louis C, Thomas C. On the promoting effect of Au on CO oxidation kinetics of Au–Pt bimetallic nanoparticles supported on SiO2: an electronic effect. J Catal. 2012;287:102–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew K. Galwey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

L’vov, B.V., Galwey, A.K. Toward a general theory of heterogeneous reactions. J Therm Anal Calorim 113, 561–568 (2013). https://doi.org/10.1007/s10973-012-2754-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2754-z

Keywords

Navigation