Skip to main content
Log in

Synthesis of aromatic amine curing agent containing non-coplanar rigid moieties and its curing kinetics with epoxy resin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A kind of aromatic diamine, 4′, 4″-(2, 2-diphenylethene-1, 1-diyl)dibiphenyl-4-amine (TPEDA), was successfully synthesized via Suzuki coupling reaction. The TPEDA containing nonplanar rigid moieties can be used as epoxy resins curing agent to improve the complex properties of cured composites. The curing kinetics during thermal processing of E51/TPEDA system was investigated by nonisothermal differential scanning calorimeter. The average activation energy (E α), pre-exponential factor (lnA), and reaction order (n) calculated from the Kissinger, the Ozawa, the Friedman and the Flynn–Wall–Ozawa methods were 55.8 kJ mol−1, 9.4 s−1 and 1.1, respectively. By the aid of estimated kinetic parameters, the predicted heat generation vs temperature curves fit well with the experimental data, which supported the validity of the estimated parameters and the applicability of the analysis method used in this work. By the introduction of nonplanar rigid moieties, the cured epoxy resins with TPEDA exhibited a higher glass transition temperature (T g = 258 °C), good thermal stability (≈395 °C at 10 % mass-loss), and high char yield (36.6 % at 700 °C under nitrogen) compared with conventional curing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mustata FR, Tudorachi N, Bicu I. Epoxy resins cross-linked with bisphenol A/methylenedianiline novolac resin type: curing and thermal behavior study. Ind Eng Chem Res. 2012;51:8415–24.

    Article  CAS  Google Scholar 

  2. Achilias DS, Karabela MM, Varkopoulou EA, Sideridou ID. Cure kinetics study of two epoxy systems with fourier tranform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). J Macromol Sci Part A. 2012;49:630–8.

    Article  CAS  Google Scholar 

  3. Yang G, Fu SY, Yang JP. Preparation and mechanical properties of modified epoxy resins with flexible diamines. Polymer. 2007;48:302–10.

    Article  CAS  Google Scholar 

  4. Chiu YC, Huang CC, Tsai HC, Prasannan A, Toyoko I. Effect of aromatic and aliphatic amines as curing agents in sulfone epoxy monomer curing process. Polym Bull. 2013;70:1367–82.

    Article  CAS  Google Scholar 

  5. Zhang XH, Liu F, Chen S, Qi GR. Novel flame retardant thermosets from nitrogen containing and phosphorus containing epoxy resins cured with dicyandiamide. J Appl Polym Sci. 2007;106:2391–7.

    Article  CAS  Google Scholar 

  6. Wang CS, Shieh JY. Synthesis and properties of epoxy resins containing 2-(6-oxid-6H-dibenz <c,e> <1,2> oxaphosphorin-6-yl)1,4-benzenediol. Polymer. 1998;39:5819–26.

    Article  CAS  Google Scholar 

  7. Guo QP. Effect of curing agent on the phase behaviour of epoxy resin/phenoxy blends. Polymer. 1995;36:4753–60.

    Article  CAS  Google Scholar 

  8. Boey FYC, Yap BH, Chia L. Microwave curing of epoxy-amine system effect of curing agent on the rate enhancement. Polym Test. 1999;18:93–109.

    Article  CAS  Google Scholar 

  9. Hill DJT, George GA, Rogers DG. A systematic study of the microwave and thermal cure kinetics of the DGEBA/DDS and DGEBA/DDM epoxy-amine resin systems. Polym Adv Technol. 2002;13:353–62.

    Article  CAS  Google Scholar 

  10. Ren LZ. Suzuki coupling reactions catalyzed by poly(N-ethyl-4-vinylpyridinium) bromide stabilized palladium nanoparticles in aqueous solution. Exp Polym Lett. 2008;2:251–5.

    Article  CAS  Google Scholar 

  11. Shechter L, Wynstra J, Kurkjy RP. Glycidyl ether reactions with amines. Ind Eng Chem. 1956;48:94–7.

    Article  CAS  Google Scholar 

  12. Dušek K, Bleha M, Luňák S. Curing of epoxide resins: model reactions of curing with amines. J Polym Sci. 1977;15:2393–400.

    Google Scholar 

  13. Liu YL, Cai ZQ, Wen X, Pi PH, Zheng DF, Cheng J, Yang ZR. Thermal properties and cure kinetics of a liquid crystalline epoxy resin with biphenyl-aromatic ester mesogen. Thermochim Acta. 2011;513:88–93.

    Article  CAS  Google Scholar 

  14. Harsch M, Karger KJ, Holst M. Influence of fillers and additives on the cure kinetics of an epoxy/anhydride resin. Eur Polym J. 2007;43:1168–78.

    Article  CAS  Google Scholar 

  15. Moroni A, Mijovic J, Pearce EM, Foun CC. Cure kinetics of epoxy resins and aromatic diamines. J Appl Polym Sci. 1986;32:3761–73.

    Article  CAS  Google Scholar 

  16. Shang CY, Zhao XJ, Yang X, Zhang Y, Huang W. Epoxy resin containing trifluoromethyl and pendant polyfluorinated phenyl groups: synthesis and properties. High Perform Polym. 2012;24:683–91.

    Article  Google Scholar 

  17. Dyakonov T, Chen Y, Holland K, Drbohlav J, Burns D, Velde DV, Seib L, Soloski EJ, Kuhn J, Mann PJ, Stevenson WTK. Thermal analysis of some aromatic amine cured model epoxy resin systems—I: materials synthesis and characterization, cure and post-cure. Polym Degrad Stab. 1996;54:67–83.

    Article  CAS  Google Scholar 

  18. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  19. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  20. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Polym Symp. 1964;6:183–95.

    Article  Google Scholar 

  21. Flynn JH. The isoconversional method for determination of energy of activation at constant heating rates—corrections for the doyle approximation. J Therm Anal Calorim. 1983;27:95–102.

    Article  CAS  Google Scholar 

  22. Lee JY, Shim MJ, Kim SW. Thermal decomposition kinetics of an epoxy resin with rubber-modified curing agent. J Appl Polym Sci. 2001;81:479–85.

    Article  CAS  Google Scholar 

  23. Kamal MR, Sourour S. Kinetics and thermal characterization of thermoset cure. Polym Eng Sci. 1973;13:59–64.

    Article  CAS  Google Scholar 

  24. Zeng XL, Yu SH, Sun R. Effect of functionalized multiwall carbon nanotubes on the curing kinetics and reaction mechanism of bismaleimide–triazine. J Therm Anal Calorim. 2013;114:387–95.

    Article  CAS  Google Scholar 

  25. Ghumara RY, Adroja PP, Parsania PH. Synthesis, characterization, and dynamic DSC curing kinetics of novel epoxy resin of 2,4,6-tris(4-hydroxyphenyl)-1-3-5-triazine. J Therm Anal Calorim. 2013;114:873–81.

    Article  CAS  Google Scholar 

  26. Ramesh P, Ravikumar L, Burkanudeen A. Curing properties of novel curing agent based on phenyl bisthiourea for an epoxy resin system. J Therm Anal Calorim. 2014;115:713–22.

    Article  CAS  Google Scholar 

  27. Wang H, Zhang Y, Zhu L, Du Z, Zhang B, Zhang Y. Curing behaviors and kinetics of epoxy resins with a series of biphenyl curing agents having different methylene units. Thermochim Acta. 2011;521:18–25.

    Article  CAS  Google Scholar 

  28. Francisco GB, Gregory CF. Amino alcohols as ligands for nickel-catalyzed suzuki reactions of unactivated alkyl halides, including secondary alkyl chlorides, with arylboronic acids. J Am Chem Soc. 2006;128:5360–1.

    Article  Google Scholar 

  29. Zhou X, Li HY, Chi ZG, Zhang XQ, Zhang JY, Xu BJ, Zhang Y, Liu SW, Xu JR. Piezofluorochromism and morphology of a new aggregation-induced emission compound derived from tetraphenylethylene and carbazole. New J Chem. 2012;36:685–93.

    Article  CAS  Google Scholar 

  30. Allaoui A. How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites?—a review. Exp Polym Lett. 2009;3:588–94.

    Article  CAS  Google Scholar 

  31. Zhang J. Effect of cure cycle on curing process and hardness for epoxy resin. Exp Polym Lett. 2009;3:534–41.

    Article  CAS  Google Scholar 

  32. Qiu SL. Effects of graphene oxides on the cure behaviors of a tetrafunctional epoxy resin. Exp Polym Lett. 2011;5:809–18.

    Article  CAS  Google Scholar 

  33. Dimopoulos A, Skordos AA, Partridge IK. Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system. J Appl Polym Sci. 2012;124:1899–905.

    Article  CAS  Google Scholar 

  34. Wang HM, Zhang YC, Zhu LR, Zhang BL, Zhang YY. Synthesis and curing behavior of a novel liquid crystalline epoxy resin. J Therm Anal Calorim. 2011;103:1031–7.

    Article  CAS  Google Scholar 

  35. Jubsilp C, Damrongsakkul S, Takeichi T, Rimdusit S. Curing kinetics of arylamine-based polyfunctional benzoxazine resins by dynamic differential scanning calorimetry. Thermochim Acta. 2006;447:131–40.

    Article  CAS  Google Scholar 

  36. Zhao H, Gao J, Li Y, Shen S. Curing kinetics and thermal property characterization of bisphenol-F epoxy resin and meTHPA system. J Therm Anal Calorim. 2003;74:227–36.

    Article  CAS  Google Scholar 

  37. Guo F, Xia XN, Xiong YQ, Liu J, Xu WJ. Novel macromolecular epoxy resin curing agent containing biphenyl and maleimide moieties: preparation, curing kinetics, and thermal properties of its cured polymer. J Appl Polym Sci. 2012;125:104–13.

    Article  CAS  Google Scholar 

  38. Patel MN, Gandhi DS, Parmar PA. Synthesis, biological aspects and SOD mimic activity of square pyramidal copper(II) complexes with the 3rd generation quinolone drug sparfloxacin and phenanthroline derivatives. Inorg Chem Commun. 2011;14:128–32.

    Article  CAS  Google Scholar 

  39. Hassanzadeh P, Andrews L. Matrix reactions of sulfur atoms and fluorine. Infrared spectra of sulfur monofluoride, sulfur difluoride and sulfur trifluoride in solid argon. J Phys Chem. 1992;96:79–84.

    Article  CAS  Google Scholar 

  40. Hougham G, Tesoro G, Viehbeck A. Influence of free volume change on the relative permittivity and refractive index in fluoropolyimides. Macromolecules. 1996;29:3453–6.

    Article  CAS  Google Scholar 

  41. Long TM, Swager TM. Molecular design of free volume as a route to low-κ dielectric materials. J Am Chem Soc. 2003;125:14113–9.

    Article  CAS  Google Scholar 

  42. Jyotishkumar P, Pionteck J, Häußler L, Adam G, Thomas S. Poly(acrylonitrile-butadiene-styrene) modified epoxy–amine systems analyzed by FTIR and modulated DSC. J Macromol. Sci. B. 2012;51:1425–36.

    Article  CAS  Google Scholar 

  43. Supriya N, Catherine KB, Rajeev R. DSC-studies on kinetics of curing and thermal decomposition of epoxy–ether amine systems. J Therm Anal Calorim. 2013;112:201–8.

    Article  CAS  Google Scholar 

  44. Jovičić MC, Radičević RŽ, Budinski-Simendić JK. Curing of alkyds based on semi-drying oils with melamine resin. J Therm Anal Calorim. 2008;94:143–50.

    Article  Google Scholar 

  45. Gabilondo N, López M, Ramos JA, Echeverría JM, Mondragon I. Curing kinetics of amine and sodium hydroxide catalyzed phenol-formaldehyde resins. J Therm Anal Calorim. 2007;90:229–36.

    Article  CAS  Google Scholar 

  46. Liu GD, Zhao B, Zhou XF, Wang JX, Gao JG, Qu XW, Zhang LC. Curing kinetics of diglycidyl ether of bisphenol A and diaminodiphenylmethane using a mechanistic model. Macromol Theory Simul. 2006;15:339–46.

    Article  CAS  Google Scholar 

  47. Vyazovkin S, Sbirrazzuoli N. Mechanism and kinetics of epoxy-amine cure studied by differential scanning calorimetry. Macromolecules. 1996;29:1867–73.

    Article  CAS  Google Scholar 

  48. Vyazovkin S, Mititelu A, Sbirrazzuoli N. Kinetics of epoxy–amine curing accompanied by the formation of liquid crystalline structure. Macromol Rapid Commun. 2003;24:1060–5.

    Article  CAS  Google Scholar 

  49. Macedo PB, Litovitz TA. On the relative roles of free volume and activation energy in the viscosity of liquids. J Phys Chem. 1965;42:245–56.

    Article  CAS  Google Scholar 

  50. Wang HM, Zhang YC, Zhu LR, Zhang BL, Zhang YY. Curing behavior and kinetics of epoxy resins cured with liquid crystalline curing agent. J Therm Anal Calorim. 2012;107:1205–11.

    Article  CAS  Google Scholar 

  51. Ghumara RY, Adroja PP, Parsania PH. Synthesis, characterization, and dynamic DSC curing kinetics of novel epoxy resin of 2,4,6-tris(4-hydroxyphenyl)-1-3-5-triazine. J Therm Anal Calorim. 2013;114:873–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Guangdong and Shenzhen Innovative Research Team Program (No. 2011D052, KYPT20121228160843692), National Natural Science Foundation of China (Grant No. 21201175), R&D Funds for basic Research Program of Shenzhen (Grant No. JCYJ20120615140007998), and the research funding from National S&T Major Project (No. 2011ZX02709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Zhang, G., Sun, R. et al. Synthesis of aromatic amine curing agent containing non-coplanar rigid moieties and its curing kinetics with epoxy resin. J Therm Anal Calorim 117, 831–843 (2014). https://doi.org/10.1007/s10973-014-3807-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3807-2

Keywords

Navigation