Skip to main content
Log in

Thermal and spectroscopic characterization of nanostructured zirconia–scandia–dysprosia

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Zirconia containing 10 mol% scandia and x mol% dysprosia (0 ≤ x ≤ 1.5) gels was synthesized by simultaneous precipitation at room temperature. The aim of this work is to verify the effect of dysprosium on the cubic phase stabilization of the zirconia–scandia solid electrolyte. The gel was characterized by thermogravimetry, differential scanning calorimetry, and differential thermal analyses. The thermally treated powders were analyzed by Fourier transform infrared spectroscopy, thermal analyses, and X-ray diffraction techniques. For comparison purpose, a commercial zirconia–10 mol% scandia powder was subjected to some characterization techniques. The infrared spectrum shows characteristic absorption bands due to residual material from the synthesis on the surface of the powder particles. Nanostructured powders were obtained after thermal treatments at 500 °C for 2 h. Infrared spectroscopy and X-ray diffraction results evidence the stabilization of the cubic phase in zirconia–scandia containing dysprosium. The thermal stability of the cubic phase during thermal cycling was ascertained by thermal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Subbarao EC. Solid electrolytes and their applications. New York: Plenum Press; 1980.

    Book  Google Scholar 

  2. Minh NQ. Ceramic fuel cells. J Am Ceram Soc. 1993;76:563–88.

    Article  CAS  Google Scholar 

  3. Fergus JW. Electrolytes for solid oxide fuel cells. J Power Sourc. 2006;162:30–40.

    Article  CAS  Google Scholar 

  4. Nomura K, Mizutani Y, Kawai M, Nakamura Y, Yamamoto O. Aging and Raman scattering study of scandia and yttria doped zirconia. Solid State Ion. 2000;132:235–9.

    Article  CAS  Google Scholar 

  5. Badwal SPS, Ciacchi FT, Milosevic D. Scandia–zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ion. 2000;136(137):91–9.

    Article  Google Scholar 

  6. Wang Z, Cheng M, Bi Z, Dong Y, Zhang H, Zhang J, Feng Z, Li C. Structure and impedance of ZrO2 doped with Sc2O3 and CeO2. Mater Lett. 2005;59:2579–82.

    Article  CAS  Google Scholar 

  7. Ishii T, Iwata T, Tajima Y, Yamaji A. Structural phase transition and ion conductivity in 0.88ZrO2–0.12Sc2O3. Solid State Ion. 1992;57:153–7.

    Article  CAS  Google Scholar 

  8. Tao J, Hao Y, Wang J. The research of crystal structure and electrical properties of a new electrolyte material: scandia and holmia stabilized zirconia. J Ceram Soc Jpn. 2013;121:317–25.

    Article  CAS  Google Scholar 

  9. Omar S, Najib WB, Chen W, Bonanos N. Electrical conductivity of 10 mol% Sc2O3-1 mol% M2O3–ZrO2 ceramics. J Am Ceram Soc. 2012;95:1965–72.

    Article  CAS  Google Scholar 

  10. Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y. Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ion. 1995;79:137–42.

    Article  CAS  Google Scholar 

  11. Politova TI, Irvine JTS. Investigation of scandia–yttria–zirconia system as an electrolyte material for intermediate temperature fuel cells-influence of yttria content in system (Y2O3) x (Sc2O3)(11−x)(ZrO2)89. Solid State Ion. 2004;168:153–65.

    Article  CAS  Google Scholar 

  12. Fujimori H, Yashima M, Kakihana M, Yoshimura M. β-cubic phase transition of scandia-doped zirconia solid solution: calorimetry, X-ray diffraction, and Raman scattering. J Appl Phys. 2002;91:6493–8.

    Article  CAS  Google Scholar 

  13. Shayachmetov U, Dranca I. Use of methods of thermal analysis in studying ceramic materials on the basis of Al2O3, ZrO2, Si3N4, SiC and inorganic binder. J Therm Anal Calorim. 2001;64:1153–61.

    Article  CAS  Google Scholar 

  14. Pastor M, Maiti S, Pandey A, Biswas K, Manna I. Effect of dysprosia doping on structural and electrical property of stabilized zirconia for intermediate-temperature SOFCs. Mater Chem Phys. 2011;125:202–9.

    Article  CAS  Google Scholar 

  15. Kalizewski MS, Heuer AH. Alcohol interaction with zirconia powders. J Am Ceram Soc. 1990;73:1504–9.

    Article  Google Scholar 

  16. Lange FF. Powder processing science and technology for increased reliability. J Am Ceram Soc. 1989;72:3–15.

    Article  CAS  Google Scholar 

  17. Warren BE. X-ray diffraction. New York: Dover; 1990.

    Google Scholar 

  18. George A, Seena PT. Thermal studies on zirconium hydroxide gel formed by aqueous gelation. J Thermal Anal Calorim. 2012;110:1037–41.

    Article  CAS  Google Scholar 

  19. Tadokoro SK, Muccillo ENS. Physical characteristics and sintering behavior of ultrafine zirconia–ceria powders. J Eur Ceram Soc. 2002;22:1723–8.

    Article  CAS  Google Scholar 

  20. Ávila DM, Muccillo ENS. Influence of some variables of the precipitation process on the structural characteristics of fine zirconia powders. Thermochim Acta. 1995;256:391–8.

    Article  Google Scholar 

  21. McDevitt NT, Baun WL. Infrared absorption spectroscopy in zirconia research. J Am Ceram Soc. 1964;47:622–4.

    Article  CAS  Google Scholar 

  22. Phillippi CM, Mazdiyasni KS. Infrared and Raman spectra of zirconia polymorphs. J Am Ceram Soc. 1971;54:254–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge FAPESP, CNPq, and CNEN for financial supports, CTR/IPEN and Polytechnique School of the University of S. Paulo for some thermal analysis and FTIR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. S. Muccillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosso, R.L., Matos, J.R. & Muccillo, E.N.S. Thermal and spectroscopic characterization of nanostructured zirconia–scandia–dysprosia. J Therm Anal Calorim 117, 567–572 (2014). https://doi.org/10.1007/s10973-014-3766-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3766-7

Keywords

Navigation