Skip to main content
Log in

Thermally resolved synchrotron FT-IR microscopy of structural changes in bloodmeal-based thermoplastics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Synchrotron FT-IR micro-spectroscopy was used to determine thermally induced structural changes in thermoplastic protein produced from bloodmeal after mixing with sodium sulphite, sodium dodecyl sulphate, urea, tri-ethylene glycol and water. Changes in protein secondary structure at elevated temperature were assessed using second derivative peak height ratios in the amide III region (1,200–1,330 cm−1) and compared with DSC and DMA results over the same temperature range. The results show an increase in ordered β-sheet structures with temperature at the expense of random coils, and that these β-sheets do not melt in the temperature range up to extrusion temperature of 120 °C. The implication of this is that during melt processing, β-sheet clusters may remain intact, similar to dispersed particulate fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Filstrup P. Processes and equipment for protein by-products in the meat industry. In: Grant RA, editor. Applied protein chemistry. London: Applied Science Publishers Ltd; 1980. p. 181–222.

    Google Scholar 

  2. Swan JE. Animal By-Product Processing. In: Francis FJ, editor. Wiley encyclopedia of food science and technology. 2nd ed. New York: Wiley; 2000. p. 4 v, (xxi, 2768).

  3. Fernando T. Blood Collection and Processing. Richmond: School of Food Sciences, Hawkesbury Agricultural College; 13th–17th May 1984.

  4. Verbeek CJR, Viljoen C, Pickering KL, van den Berg LE, Inventors. Waikatolink Limited, assignee. NZ551531: Plastics material. New Zealand Patent 551531. Granted 2009 21 Nov 2007.

  5. Verbeek CJR, van den Berg LE. Development of proteinous bioplastics using bloodmeal. J Polym Environ. 2010;19:1–10. doi:10.1007/s10924-010-0232-x.

    Article  Google Scholar 

  6. De Graaf LA. Denaturation of proteins from a non-food perspective. J Biotechnol. 2000;79(3):299–306.

    Article  Google Scholar 

  7. Perkins WG. Polymer toughness and impact resistance. Polym Eng Sci. 1999;39(12):2445–60. doi:10.1002/pen.11632.

    Article  CAS  Google Scholar 

  8. Devlin TM. Textbook of biochemistry: with clinical correlations. 7th ed. Hoboken: Wiley; 2011.

    Google Scholar 

  9. Sowdhamini R, Balaram P. Protein Structrure and Stability. In: Gupta MN, editor. Thermostability of enzymes. New York: Springer; 1993. p. vi, 213.

  10. Dill KA, Shortle D. Denatured states of proteins. Annu Rev Biochem. 1991;60:795–825. doi:10.1146/annurev.bi.60.070191.004051.

    Article  CAS  Google Scholar 

  11. Verbeek CJR, van den Berg LE. Extrusion processing and properties of protein-based thermoplastics. Macromol Mater Eng. 2010;295(1):10–21. doi:10.1002/mame.200900167.

    Article  CAS  Google Scholar 

  12. Athamneh AI, Griffin M, Whaley M, Barone JR. Conformational changes and molecular mobility in plasticized proteins. Biomacromolecules. 2008;9(11):3181–7. doi:10.1021/bm800759g.

    Article  CAS  Google Scholar 

  13. Oliviero M, Maio ED, Iannace S. Effect of molecular structure on film blowing ability of thermoplastic zein. J Appl Polym Sci. 2010;115(1):277–87.

    Article  CAS  Google Scholar 

  14. Bengoechea C, Arrachid A, Guerrero A, Hill SE, Mitchell JR. Relationship between the glass transition temperature and the melt flow behavior for gluten, casein and soya. J Cereal Sci. 2007;45(3):275–84.

    Article  CAS  Google Scholar 

  15. Verbeek CJR, Bier JM. Synthesis and characterisation of thermoplastic agro-polymers. In: Sharma SK, Mudhoo A, editors. A handbook of biopolymers: synthesis, degradation and applications. Cambridge: RSC Publishing; 2011. p. 197–242.

    Chapter  Google Scholar 

  16. Murphy SH, Leeke GA, Jenkins MJ. A Comparison of the use of FTIR spectroscopy with DSC in the characterisation of melting and crystallisation in polycaprolactone. J Therm Anal Calorim. 2012;107(2):669–74. doi:10.1007/s10973-011-1771-7.

    Article  CAS  Google Scholar 

  17. Tian K, Porter D, Yao J, Shao Z, Chen X. Kinetics of thermally-induced conformational transitions in soybean protein films. Polymer. 2010;51(11):2410–6.

    Article  CAS  Google Scholar 

  18. Hu X, Lu Q, Kaplan DL, Cebe P. Microphase separation controlled beta-sheet crystallization kinetics in fibrous proteins. Macromolecules. 2009;42(6):2079–87. doi:10.1021/ma802481p.

    Article  CAS  Google Scholar 

  19. Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin. 2007;39(8):549–59. doi:10.1111/j.1745-7270.2007.00320.x.

    Article  CAS  Google Scholar 

  20. Cai SW, Singh BR. Identification of beta-turn and random coil amide III infrared bands for secondary structure estimation of proteins. Biophys Chem. 1999;80(1):7–20. doi:10.1016/s0301-4622(99)00060-5.

    Article  CAS  Google Scholar 

  21. Miller LM. Biomedical applications of infrared microspectroscopy using synchrotron radiation. In: Salzer R, Siesler HW, editors. Infrared and Raman spectroscopic imaging. Weinheim: Wiley-VCH; 2009. p. xx, 510.

  22. Yu PQ, McKinnon JJ, Christensen CR, Christensen DA. Using synchrotron-based FTIR microspectroscopy to reveal chemical features of feather protein secondary structure: comparison with other feed protein sources. J Agric Food Chem. 2004;52(24):7353–61. doi:10.1021/jf0490955.

    Article  CAS  Google Scholar 

  23. Ling SJ, Qi ZM, Knight DP, Shao ZZ, Chen X. Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules. 2011;12(9):3344–9. doi:10.1021/bm2006032.

    Article  CAS  Google Scholar 

  24. Bier JM, Verbeek CJR, Lay MC. Using synchrotron FTIR spectroscopy to determine secondary structure changes and distribution in thermoplastic protein. J Appl Polym Sci. 2013;130(1):359–69. doi:10.1002/app.39134.

    Article  CAS  Google Scholar 

  25. Royall PG, Huang CY, Tang SWJ, Duncan J, Van-de-Velde G, Brown MB. The development of DMA for the detection of amorphous content in pharmaceutical powdered materials. Int J Pharm. 2005;301(1–2):181–91. doi:10.1016/j.ijpharm.2005.05.015.

    Article  CAS  Google Scholar 

  26. Diem M, Matthäus C, Chernenko T, Romeo MJ, Milijković M, Bird B et al. Infrared and Raman spectroscopy and spectral imaging of individual cells. In: Salzer R, Siesler HW, editors. Infrared and Raman spectroscopic imaging. Weinheim: Wiley-VCH; 2009. p. xx, 510.

  27. Zhang J, Yan Y-B. Probing conformational changes of proteins by quantitative second-derivative infrared spectroscopy. Anal Biochem. 2005;340(1):89–98.

    Article  CAS  Google Scholar 

  28. Saarakkala S, Rieppo L, Rieppo J, Jurvelin JS. Fourier transform infrared (FTIR) microspectroscopy of immature, mature and degenerated articular cartilage. In: Méndez-Vilas A, Díaz J, editors. Microscopy: science, technology, applications and education vol. 1. FORMATEX Microscopy Series No. 4, 2010. p. 403–14.

  29. Seabourn BW, Chung OK, Seib PA, Mathewson PR. Determination of secondary structural changes in gluten proteins during mixing using Fourier transform horizontal attenuated total reflectance spectroscopy. J Agric Food Chem. 2008;56(11):4236–43. doi:10.1021/jf703569b.

    Article  CAS  Google Scholar 

  30. Bier JM, Verbeek CJR, Lay MC. Identifying transition temperatures in bloodmeal-based thermoplastics using material pocket DMTA. J Therm Anal Calorim. 2013;112(1303):1315. doi:10.1007/s10973-012-2680-0.

    Google Scholar 

  31. Mo X, Sun X. Effects of storage time on properties of soybean protein-based plastics. J Polym Environ. 2003;11(1):15–22.

    Article  CAS  Google Scholar 

  32. Menczel JD, Prime RB. Thermal analysis of polymers: fundamentals and applications. Hoboken: Wiley; 2009.

    Book  Google Scholar 

  33. Farahnaky A, Badii F, Farhat IA, Mitchell JR, Hill SE. Enthalpy relaxation of bovine serum albumin and implications for its storage in the glassy state. Biopolymers. 2005;78(2):69–77. doi:10.1002/bip.20265.

    Article  CAS  Google Scholar 

  34. Cao J. Melting study of the [alpha]-form crystallites in human hair keratin by DSC. Thermochim Acta. 1999;335(1–2):5–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was undertaken on the infrared microspectroscopy beamline at the Australian Synchrotron, Clayton, VIC, Australia. Proposal number AS122/IRMFI/4951. The authors would especially like to acknowledge the technical assistance of Dr. Mark Tobin and Dr. Danielle Martin. Travel funding support was received from the New Zealand Synchrotron Group Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Michael Bier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bier, J.M., Verbeek, C.J.R. & Lay, M.C. Thermally resolved synchrotron FT-IR microscopy of structural changes in bloodmeal-based thermoplastics. J Therm Anal Calorim 115, 433–441 (2014). https://doi.org/10.1007/s10973-013-3340-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3340-8

Keywords

Navigation