Skip to main content
Log in

Experimental study on the energetics of two indole derivatives

Standard molar enthalpies of formation of indole-2-carboxylic acid and indole-3-carboxaldehyde

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The standard (p o = 0.1 MPa) molar energies of combustion, \( \Updelta_{\text{c}} H_{\text{m}}^{\text{o}} \), for indole-2-carboxylic acid and indole-3-carboxaldehyde, in the crystalline state, were determined, at T = 298.15 K, using a static bomb combustion calorimeter. For both compounds, the vapour pressures as function of temperature were measured, by the Knudsen effusion technique, and the standard molar enthalpies of sublimation, \( \Updelta_{\text{cr}}^{\text{g}} H_{\text{m}}^{\text{o}} \), at T = 298.15 K, were derived by the Clausius–Clapeyron equation. From the experimental results, the standard (p o = 0.1 MPa) molar enthalpies of formation in the condensed and gaseous phases, at T = 298.15 K, of indole-2-carboxylic acid and indole-3-carboxaldehyde were derived. The results are analysed in terms of structural enthalpic increments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee S, Yang Yi K, Kim S, Suh J, Kim NJ, Yoo S, Lee BH, Seo HW, Kim S, Lim H. Cardioselective anti-ischemic ATP-sensitive potassium channel (KATP) openers: benzopyranyl indoline and indole analogues. Eur J Med Chem. 2003;38:459–71.

    Article  CAS  Google Scholar 

  2. Noguchi T, Tanaka N, Nishimata T, Goto R, Hayakawa M, Sugidachi A, Ogawa T, Asai F, Matsui Y, Fujimoto K. Indoline derivatives I: synthesis and factor Xa (FXa) inhibitory activities. Chem Pharm Bull. 2006;54:163–74.

    Article  CAS  Google Scholar 

  3. Hür D, Güven A. The acidities of some indoles. J Mol Struct (Theochem). 2002;1:18–9.

    Google Scholar 

  4. Ribeiro da Silva MAV, Cabral JITA, Gomes JRB. Experimental and computational study on the molecular energetics of indoline and indole. J Phys Chem A. 2008;112:12263–9.

    Article  CAS  Google Scholar 

  5. Ribeiro da Silva MAV, Cabral JITA, Gomes JRB. Combined experimental and computational study of the energetics of methylindoles. J Chem Thermodyn. 2009;41:1193–8.

    Article  CAS  Google Scholar 

  6. Ribeiro da Silva MAV, Cabral JITA. Experimental thermochemical study of 5-bromoindole and 5-bromoindoline. J Chem Thermodyn. 2009;41:84–9.

    Article  Google Scholar 

  7. Ribeiro da Silva MAV, Cabral JITA. Experimental study on the thermochemistry of 5-nitroindole and 5-nitroindoline. J Chem Thermodyn. 2009;41:355–60.

    Article  CAS  Google Scholar 

  8. Smith DH, Okiyama K, Thomas MJ, McIntosh TK. Effects of the excitatory amino acid receptor antagonists kynurenate and indole-2-carboxylic acid on behavioral and neurochemical outcome following experimental brain injury. J Neurosci. 1993;13:5383–92.

    CAS  Google Scholar 

  9. Nagata S, Takeyama K, Fukuya F, Nagai R, Hosoki K, Nishimura K, Deguchi T, Karasawa T. Antihypertensive properties of a new long-acting angiotensin converting enzyme inhibitor in renin-dependent and independent hypertensive models. Arzneimittel-Forschung/Drug Res. 1995;14:853–8.

    Google Scholar 

  10. Vlasova MI, Kogan NA, Lesiovskaya YY, Pastushenkov LV. Synthesis and biological activity of 1-aryl-2-oxa-5-aza-5r1–6-oxocyclooctano[6,7-b]indoles. Pharm Chem J. 1992;26:492–6.

    Article  Google Scholar 

  11. Nichols AC, Yielding KL. Anticonvulsant activity of antagonists for the NMDA-associated glycine binding site. Mol Chem Neuropathol. 1993;19:269–82.

    Article  CAS  Google Scholar 

  12. Mugnaini M, Antolini M, Corsi M, Vanamsterdam FT. [3H]5,7-dichlorokynurenic acid recognizes two binding sites in rat cerebral cortex membranes. J Recept Signal Transduct Res. 1998;18:91–112.

    Article  CAS  Google Scholar 

  13. Kipp C, Young AR. The soluble eumelanin precursor 5,6-dihydroxyindole-2-carboxylic acid enhances oxidative damage in human keratinocyte DNA after UVA irradiation. Photochem Photobiol. 1999;70:191–8.

    Article  CAS  Google Scholar 

  14. Kutschy P, Dzurilla M, Takasugi M, Sabova A. Synthesis of some analogs of indole phytoalexins brassinin and methoxybrassenin B and their positional isomers. Coll Czech Chem Commun. 1999;64:348–62.

    Article  CAS  Google Scholar 

  15. Gurkok G, Altanlar N, Suzen S. Investigation of antimicrobial activities of indole-3-aldehyde hydrazide/hydrazone derivatives. Int J Exp Clin Chemother. 2009;55:15–9.

    CAS  Google Scholar 

  16. Sinha D, Tiwari AK, Singh S, Shukla G, Mishra P, Chandra H, Mishra AK. Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. Eur J Med Chem. 2008;42:160–5.

    Article  Google Scholar 

  17. Gundry HA, Harrop D, Head AJ, Lewis GB. Thermodynamic properties of organic oxygen compounds 21. Enthalpies of combustion of benzoic acid, pentan-1-ol, octan-1-ol, and hexadecan-1-ol. J Chem Thermodyn. 1969;1:321–32.

    Article  CAS  Google Scholar 

  18. Bickerton J, Pilcher G, Al-Takhin G. Enthalpies of combustion of the three aminopyridines and the three cyanopyridines. J Chem Thermodyn. 1984;16:373–8.

    Article  CAS  Google Scholar 

  19. da Silva MDMCR, Santos LMNBF, Silva ALR, Fernandes O, Acree WE Jr. Energetics of 6-methoxyquinoline and 6-methoxyquinoline N-oxide: the dissociation enthalpy of the (N–O) bond. J Chem Thermodyn. 2003;35:1093–100.

    Article  Google Scholar 

  20. Certificate of Analysis Standard Reference Material 39j Benzoic Acid Calorimetric Standard. Washington, DC: NBS; 1995.

  21. Santos LMNBF, Silva MT, Schröder B, Gomes L. J Therm Anal Calorim. 2007;89:175–80.

    Article  CAS  Google Scholar 

  22. Copps J, Jessup RS, Van Nes K. Calibration of calorimeters for reactions in a bomb at constant volume. In: Rossini FD, editor. Experimental Thermochemistry, vol. 1. Chapter 3. New York: Interscience; 1956.

    Google Scholar 

  23. Wagmam DD, Evans WH, Parker VB, Shum RH, Halow I, Bailey SM, Kenneth LC, Nuttal RL. The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data. 1982;11(2):2–12.

    Google Scholar 

  24. Washburn EW. Standard states for bomb calorimetry. J Res Nalt Bur Stand (US). 1933;10:525–58.

    CAS  Google Scholar 

  25. Hubbard WN, Scott DW, Waddington G. Standard states and corrections for combustions in a bomb at constant volume. In: Rossini FD, editor. Experimental thermochemistry, vol. 1. Chapter 5. New York: Interscience; 1956.

    Google Scholar 

  26. Yaws CL, Chen DH. Density of solid—organic compounds. In: Yaws CL, editor. Thermophysical properties of chemicals and hydrocarbons, vol. Chapter 5. Beaumont: William Andrew Inc.; 2008.

    Google Scholar 

  27. http://www.lookchem.com, “lookchem”–look for chemicals. Accessed September 2012.

  28. Wieser ME, Coplen TP. Atomic weights of the elements 2009 (IUPAC Technical Report). Pure Appl Chem. 2011;83:359–96.

    Article  CAS  Google Scholar 

  29. Ribeiro da Silva MAV, Monte MJS, Santos LMNB. The design, construction, and testing of a new Knudsen effusion apparatus. J Chem Thermodyn. 2006;38:778–87.

    Article  CAS  Google Scholar 

  30. Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York: Hemisphere; 1989.

    Google Scholar 

  31. Rossini FD. Assignment of uncertainties to thermochemical data. In: Rossini FD, editor. Experimental thermochemistry, vol. 1, Chapter 14. New York: Interscience; 1956.

    Google Scholar 

  32. Olofson G. Assignment of uncertainties. In: Sunner S, Månsson M, editors. Combustion calorimetry, vol. Chapter 1. Oxford: Pergamon; 1979.

    Google Scholar 

  33. Chickos JS, Hossini S, Hesse DG, Liebman JF. Heat capacity corrections to a standard state: a comparison of new and some literature methods for organic liquids and solids. Struct Chem. 1993;4:271–8.

    Article  CAS  Google Scholar 

  34. Chickos JS, Hesse DG, Liebman JF. A group additivity approach for the estimation of heat capacities of organic liquids and solids at 298 K. Struct Chem. 1993;4:261–9.

    Article  CAS  Google Scholar 

  35. Hubbard WN, Scott DW, Frow FR, Waddington G. Thiophene: heat of combustion and chemical thermodynamic properties. J Am Chem Soc. 1955;77:5855–7.

    Article  CAS  Google Scholar 

  36. Temprado M, Roux MV, Jiménez P, Dávalos JZ, Notario R. Experimental and computational thermochemistry of 2- and 3-thiophenecarboxylic acids. J Phys Chem A. 2002;106:11173–80.

    Article  CAS  Google Scholar 

  37. Ribeiro da Silva MAV, Santos AFLOM. Energetics of thiophenecarboxaldehydes and some of its alkyl derivatives. J Chem Thermodyn. 2008;40:917–23.

    Article  CAS  Google Scholar 

  38. Pedley JB. Thermochemical data and structures of organic compounds. Thermodynamics Research Center, College Station: CRC; 1994.

    Google Scholar 

  39. Roux MV, Temprado M, Jiménez P, Dávalos JZ, Notario R. Thermochemistry of furancarboxylic acids. J Phys Chem A. 2003;107:11460–71.

    Article  CAS  Google Scholar 

  40. Ribeiro da Silva MAV, Amaral LMPF. Standard molar enthalpies of formation of 2-furancarbonitrile, 2-acetylfuran, and 3-furaldehyde. J Chem Thermodyn. 2009;41:26–9.

    Article  CAS  Google Scholar 

  41. Scott DW, Berg WT, Hossenlopp IA, Hubbard WN, Messerly JF, Todd SS, Douslin DR, McCullough JP, Waddington G. Pyrrole: chemical thermodynamic properties. J Phys Chem. 1967;71:2263–70.

    Article  CAS  Google Scholar 

  42. Santos AFLOM, Ribeiro da Silva MAV. Experimental and computational study on the molecular energetics of 2-pyrrolecarboxylic acid and 1-methyl-2-pyrrolecarboxylic acid. J Phys Chem A. 2009;113(9741):50.

    Google Scholar 

  43. Santos AFLOM, Ribeiro da Silva MAV. A combined experimental and computational thermodynamic study of the isomers of pyrrolecarboxaldehyde and 1-methyl-pyrrolecarboxaldehyde. J Phys Chem B. 2011;115:12549–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Fundação para a Ciência e Tecnologia (FCT), Lisbon, Portugal and to FEDER for financial support given to Centro de Investigação em Química da Universidade do Porto and to Programa Ciência 2008 (PEst-C/QUI/UI0081/2011). Joana I. T. A. Cabral thanks FCT for the award of a Post-Doc research grant (SFRH/BPD/64735/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria D. M. C. Ribeiro da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaral, L.M.P.F., de Carvalho, T.M.T., Cabral, J.I.T.A. et al. Experimental study on the energetics of two indole derivatives. J Therm Anal Calorim 115, 803–810 (2014). https://doi.org/10.1007/s10973-013-3332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3332-8

Keywords

Navigation