Skip to main content
Log in

Enhancing the thermal and mechanical properties of PMMA using zinc carbazone complex as the initiator

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A convincing mechanistic role that lies behind the elevation of thermal indicative parameters when using Zn carbazone as the initiator for the polymerization of methyl methacrylate monomer. The overall results summed up decisively that increasing concentration of the complex had led to an increase in the glass transition temperature, eliminated the scission of the head-to-head linkage, and the unsaturated end chains scissions. Improvements of the PMMA thermal parameters are thought to have arisen due to role played by the Zn carbazone in increasing the polymer stereospecificity. Tensile testing shows that there is a strong relation between the thermal and mechanical properties of PMMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Poomalai P, Varghese TO, Siddaramaiah. Thermomechanical behaviour of poly(methyl methacrylate)/copoly(ether–ester) blends. ISRN Mater Sci. 2011;2011:1–5.

    Article  Google Scholar 

  2. Jun-Yeob S, Jin-Woong K, Kyung-Do S. Poly(methyl methacrylate) toughening with refractive index-controlled core-shell composite particles. J Appl Polym Sci. 1999;71:1607–14.

    Article  Google Scholar 

  3. Katsikas L, Avramovic M, Cortes RD, Milovanovic M, Kalagasidis-Krusic MT, Popovic I. The thermal stability of poly(methyl methacrylate) prepared by RAFT polymerization. J Serb Chem Soc. 2008;73:915–21.

    Article  CAS  Google Scholar 

  4. Laachachi A, Leroy E, Cochez M, Ferriol M, Lopez Cuesta JM. Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate). Polym Degrad Stab. 2005;89:344–52.

    Article  CAS  Google Scholar 

  5. Mallikarjuna NN, Venkataraman A, Aminabhavi T. A study on γ-Fe2O3 loaded poly(methyl methacrylate) nanocomposites. J Appl Polym Sci. 2004;94:2551–4.

    Article  CAS  Google Scholar 

  6. Pal MK, Singh B, Gautam J. Thermal stability and UV-shielding properties of poly(methyl methacrylate) and polystyrene modified with calcium carbonate nanoparticles. J Therm Anal Calorim. 2012;107:85–6.

    Article  CAS  Google Scholar 

  7. Rajkumar T, Vijayakumar CT, Sivasamy P, Wilkie CA. Thermal degradation studies on PMMA–HET acid based oligoesters blends. J Therm Anal Calorim. 2010;100:651–60.

    Article  CAS  Google Scholar 

  8. El-Mosallamy EH, Mekewi MA. Thermal properties of polystyrene/group IIB dithizonate films. Mater Chem Phys. 2003;80:319–24.

    Article  CAS  Google Scholar 

  9. Hanna WG, Mekewi MA, El-Mosallamy EH. Dithizone and carbazone complex compounds as initiators and γ-radiation anti-degradation agents for poly(methyl methacrylate). Int J Polym Mater. 2003;52:471–83.

    Article  CAS  Google Scholar 

  10. El-Mosallamy EH. Influence of metal dithizone complex compounds on the structural stability of poly(methyl methacrylate). J Polym Res. 2001;8:253–7.

    CAS  Google Scholar 

  11. El-Mosallamy EH. Prospective influence of catalytic chain transfer polymerization of methyl methacrylate via metal carbazone complexes. Macromol Indian J. 2013;9:1–6.

    CAS  Google Scholar 

  12. Zhang C, Yi XC, Asal S, Sumita M. Morphology, crystallization and melting behavior of isotactic polypropylene/high density polyethylene blend. J Mater Sci. 2000;35:673–83.

    Article  CAS  Google Scholar 

  13. Oelschlager W, Schwarz E. Fehlermöglichkeiten und deren Eliminierung bei der Bestimmung von Blei mittels Dithizon in biologischen Substanzen. Zh Anal Chem. 1972;258:203–7.

    Article  Google Scholar 

  14. Menczel JD, Prime RB. Thermal analysis of polymers, fundamentals and applications. Hoboken: Wiley; 2009.

    Book  Google Scholar 

  15. Manring LE, Sogah DY, Cohen GM. Thermal degradation of poly(methyl methacrylate). 3. Polymer with head-to-head linkages. Macromolecules. 1989;22:4652–4.

    Article  CAS  Google Scholar 

  16. Dakka SM. TG/DTA/MS of poly(methyl methacrylate), the effect of particle size. J Therm Anal Calorim. 2003;74:729–34.

    Article  CAS  Google Scholar 

  17. Cao E, Tan Z, Sun S, Liu Z, Zhang H. Enhancing the thermal stability of poly(methyl methacrylate) by removing the chains with weak links in a continuous polymerization. Polym Degrad Stab. 2011;96:2209–14.

    Article  CAS  Google Scholar 

  18. Xiong J, Liu Y, Yang X, Wang X. Thermal and mechanical properties of poly-urethane/montmorillonite nanocomposites based on a novel reactive modifier. Polym Degrad Stab. 2004;86:549–55.

    Article  CAS  Google Scholar 

  19. Patra N, Salerno M, Malerba M, Cozzoli PD, Athanassiou A. Improvement of thermal stability of poly(methyl methacrylate) by incorporation of colloidal TiO2 nanorods. Polym Degrad Stab. 2011;96:1377–81.

    Article  CAS  Google Scholar 

  20. Gao Y, Choudhury NR, Matisons J, Schubert U, Moraru B. Part2: inorganic–organic hybrid polymers by polymerization of methacrylate-substituted oxotitanium clusters with methyl methacrylate: thermomechanical and morphological properties. Chem Mater. 2002;14:4522–9.

    Article  CAS  Google Scholar 

  21. Alves NM, Ribelles JL, Mano JF. Enthalpy relaxation studies in poly(methyl methacrylate) networks with different crosslinking degrees. Polymers. 2005;46:491–504.

    CAS  Google Scholar 

  22. Zhong GJ, Zhong-Ming L, Liangbin L, Shen K. Crystallization of oriented isotactic polypropylene in the presence of in situ poly(ethylene terephthalate) microfibrils. Polymers. 1999;40:1719–29.

    Google Scholar 

  23. Robert JL, Shanks A, Long Y. Mechanical properties and morphology of polyethylene–polypropylene blends with controlled thermal history. J Appl Polym Sci. 2000;76:1151–8.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. M. Mekewi, professor of polymer and material science, Ain-Shams University, for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Said H. El-Mosallamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Mosallamy, ES.H. Enhancing the thermal and mechanical properties of PMMA using zinc carbazone complex as the initiator. J Therm Anal Calorim 115, 707–711 (2014). https://doi.org/10.1007/s10973-013-3317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3317-7

Keywords

Navigation