Skip to main content
Log in

Performance of birnessite-type manganese oxide in the thermal-catalytic degradation of polyamide 6

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Birnessite-type manganese oxide (BMO) was prepared by oxidation of Mn(NO3)2 with H2O2 in KOH solution. The nature and the extent of degradation of polyamide 6 (PA6) in the presence of samples were analysed by thermogravimetric analysis under static air atmosphere at several heating rates between 5 and 30 °C min−1. The surface and structure of BMO were characterized using infrared (IR) spectroscopy, X-ray diffraction, and thermal analysis techniques. The acid sites of BMO were investigated by IR using pyridine as a molecular probe. The activation energy for degradation estimated by Kissinger method for PA6 and BMO/PA6 system containing 10 mass% of BMO was found to be 212 and 144 kJ mol−1 under air, respectively. The catalytic activity observed in BMP catalyst was associated to a high lattice oxygen mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Panda AK, Singh PK, Mishra DK. Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—A world prospective. Renew Sust Energ Rev. 2010;14:233–48.

    Article  CAS  Google Scholar 

  2. Gaur MS, Singh PK, Suruchi, et al. Structural and thermal properties of polysulfone–ZnO nanocomposites. J Therm Anal Calorim. 2013;111:743–51.

    Article  CAS  Google Scholar 

  3. Lomakin SM, Dubnikova IL, Shchegolikhin AN, et al. Thermal degradation and combustion behavior of the polyethylene/clay nanocomposite prepared by melt intercalation. J Therm Anal Calorim. 2008;94:719–26.

    Article  CAS  Google Scholar 

  4. Fernandes VJ, Araujo AS, Fernandes GJT, et al. Kinetic parameters of polymer degradation by SAPO-37. J Therm Anal Calorim. 2001;64:585–9.

    Article  CAS  Google Scholar 

  5. Fernandes VJ, Araujo AS, Medeiros RA, et al. Kinetic parameters of polyethylene degradation by the natural zeolite chabazite. J Therm Anal Calorim. 1999;56:1279–82.

    Article  CAS  Google Scholar 

  6. Davis RD, Gilman JW, VanderHart DL. Processing degradation of polyamide 6/montmorillonite clay nanocomposites and clay organic modifier. Polym Degrad Stab. 2003;79:111–21.

    Article  CAS  Google Scholar 

  7. Jang BN, Wilkie CA. The effect of clay on the thermal degradation of polyamide 6 in polyamide 6/clay nanocomposites. Polymer. 2005;46:3264–74.

    Article  CAS  Google Scholar 

  8. Liu B, Thomas PS, Ray AS, et al. DSC characterisation of chemically reduced electrolytic manganese dioxide. J Therm Anal Calorim. 2007;88:177–80.

    Article  CAS  Google Scholar 

  9. Szumera M, Waclawska I. Thermal study of Mn-containing silicate-phosphate glasses. J Therm Anal Calorim. 2011;108:583–8.

    Article  Google Scholar 

  10. Dose WM, Donne SW. Kinetic analysis of gamma-MnO2 thermal treatment. J Therm Anal Calorim. 2011;105:113–22.

    Article  CAS  Google Scholar 

  11. Fakhreia A, Sagheer A, Zaki MI. Synthesis and surface characterization of todorokite-type microporous manganese oxides: implications for shape-selective oxidation catalysts. Microporous Mesoporous Mater. 2004;67:43–52.

    Article  Google Scholar 

  12. Cai LN, Guo Y, Lu AH, Branton P, Li WC. The choice of precipitant and precursor in the co-precipitation synthesis of copper manganese oxide for maximizing carbon monoxide oxidation. J Mol Catal A Chem. 2012;360:35–41.

    Article  CAS  Google Scholar 

  13. Jothiramalingam R, Viswanathan B, Varadarajan TK. Synthesis, characterization and catalytic oxidation activity of zirconium doped K-OMS-2 type manganese oxide materials. J Mol Catal A Chem. 2006;252:49–55.

    Article  CAS  Google Scholar 

  14. Sun M, Yu L, Ye F, Diao G, Yu Q, Hao Z, Zheng Y, Yuan L. Transition metal doped cryptomelane-type manganese oxide for low-temperature catalytic combustion of dimethyl ether. Chem Eng J. 2013;220:320–7.

    Article  CAS  Google Scholar 

  15. Zhı K, Lıu Q, Zhang Y, He S, He R. Effect of precipitator on the texture and activity of copper-manganese mixed oxide catalysts for the water gas shift reaction. J Fuel Chem Technol. 2010;38:445–51.

    Article  Google Scholar 

  16. El-Shobaky GA, El-Shobaky HG, Badawy AA, Fahmy YM. Physicochemical, surface and catalytic properties of nanosized copper and manganese oxides supported on cordierite. Appl Catal A Gen. 2011;409–410:234–8.

    Article  Google Scholar 

  17. Yadav GD, Mewada RK. Selectivity engineering in the synthesis of value added chemicals: oxidation of 1-octanol to 1-octanal over nano-fibrous Ag–OMS-2 catalysts. Chem Eng Res Des. 2012;90:86–97.

    Article  CAS  Google Scholar 

  18. Baldi M, Finocchio E, Pistarino C, Busca G. Evaluation of the mechanism of the oxy-dehydrogenation of propane over manganese oxide. Appl Catal A Gen. 1998;173:61–74.

    Article  CAS  Google Scholar 

  19. Doornkamp C, Ponec V. The universal character of the Mars and Van Krevelen mechanism. J Mol Catal A Chem. 2000;162:19–32.

    Article  CAS  Google Scholar 

  20. Reedy CR, Nagendrappa G, Prakash BSJ. Surface acidity study of Mn+-montmorillonite clay catalysts by ft-ır spectroscopy: correlation with esterification activity. Catal Commun. 2007;8:241–6.

    Article  Google Scholar 

  21. Shimizu K, Higuchi T, Takasugi E, Hatamachi T, Kodama T, Satsuma A. Characterization of Lewis acidity of cation-exchanged montmorillonite K-10 clay as effective heterogeneous catalyst for acetylation of alcohol. J Mol Catal A Chem. 2008;284:89–96.

    Article  CAS  Google Scholar 

  22. Figueiredo FCA, Jordão E, Landers R, Carvalho WA. Evaluation of some supports to RuSn catalysts applied to dimethyl adipate hydrogenation. Appl Catal A Gen. 2009;371:131–41.

    Article  CAS  Google Scholar 

  23. Liu L, Feng Q, Yanagisawa K, Bignall G, Hashida T. Lithiation reactions of Zn- and Li-birnessites in non-aqueous solutions and their stabilities. J Mater Sci. 2002;37:1315–20.

    Article  CAS  Google Scholar 

  24. Malankar H, Umare SS, Singh K, Sharma M. Room temperature synthesis of Li-doped MnO2 and its electrochemical activity. J Solid State Electrochem. 2010;14:71–82.

    Article  CAS  Google Scholar 

  25. Gaillot AC, Lanson B, Drits VA. Structure of birnessite obtained from decomposition of permanganate under soft hydrothermal conditions. 1. Chemical and structuralvolution as a function of temperature. Chem Mater. 2005;17:2959–75.

    Article  CAS  Google Scholar 

  26. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  27. Yuan J, Liu ZH, Qiao S, Ma X, Xu N. Fabrication of MnO2-pillared layered manganese oxide through an exfoliation/reassembling and oxidation process. J Power Sources. 2009;189:1278–83.

    Article  CAS  Google Scholar 

  28. Ramalingam K, Kamatchi T, Sumod PA. Synthesis, spectral, thermal and CO2 absorption studies on birnessites type layered MnO6 oxide. Transit Met Chem. 2006;31:429–33.

    Article  CAS  Google Scholar 

  29. Liang S, Teng F, Bulgan G, Zong R, Zhu Y. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C. 2008;112:5307–15.

    Article  CAS  Google Scholar 

  30. Li L, Pan Y, Chen L, Li G. One-dimensional α-MnO2: trapping chemistry of tunnel structures, structural stability, and magnetic transitions. J Solid State Chem. 2007;180:2896–904.

    Article  CAS  Google Scholar 

  31. Kang L, Zhang M, Liu Z-H, Ooi K. IR spectra of manganese oxides with either layered or tunnel structures. Spectrochim Acta A. 2007;67:864–9.

    Article  Google Scholar 

  32. Julien CM, Massot M, Poinsignon C. Lattice vibrations of manganese oxides: part I. periodic structures. Spectrochim Acta A. 2004;60:689–700.

    Article  CAS  Google Scholar 

  33. Christoskova S, Stoyanova M. Catalytic oxidation of cyanides in an aqueous phase over individual and manganese-modified cobalt oxide systems. J Hazard Mater. 2009;165:690–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Eren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 417 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eren, E., Guney, M., Eren, B. et al. Performance of birnessite-type manganese oxide in the thermal-catalytic degradation of polyamide 6. J Therm Anal Calorim 115, 567–572 (2014). https://doi.org/10.1007/s10973-013-3232-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3232-y

Keywords:

Navigation