Skip to main content
Log in

Thermal decomposition kinetics of potassium iodate

Part II. Effect of gamma-irradiation on the rate and kinetics of decomposition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of gamma ray irradiation on the rate and kinetics of thermal decomposition of potassium iodate (KIO3) has been studied by thermogravimetry (TG) under non-isothermal conditions at different heating rates (3, 5, 7, and 10 K min−1). The thermal decomposition data were analyzed using isoconversional methods of Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, and Friedman. Irradiation with gamma rays increases the rate of the decomposition and is dependent on the irradiation dose. The activation energy decreases on irradiation. The enhancement of the rate of the thermal decomposition of KIO3 upon irradiation is due to the combined effect of the production of displacements and extended lattice defects and chemical damage in KIO3. Non-isothermal model fitting method of analysis showed that the thermal decomposition of irradiated KIO3 is best described by the contracting sphere model equation, with an activation energy value of ~340 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 4

Similar content being viewed by others

References

  1. Galwey AK, Brown ME. Thermal decomposition of ionic solids. Amsterdam: Elsevier; 1999.

    Google Scholar 

  2. Stern KH. High temperature properties and thermal decomposition of inorganic salts with oxy anions. Boca Raton: CRC Press LLC; 2001.

    Google Scholar 

  3. Vyazovkin S. Thermal analysis. Anal Chem. 2004;76:3299–312.

    Article  Google Scholar 

  4. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  5. Rodante F, Vecchio S, Tomassetti M. Kinetic analysis of thermal decomposition for penicillin sodium salts: model-fitting and model-free methods. J Pharm Biomed Anal. 2002;29:1031–43.

    Article  CAS  Google Scholar 

  6. Brown ME. Introduction to thermal analysis: techniques and applications. 2nd ed. Dordrecht: Kluwer Academic Publishers; 2001.

    Google Scholar 

  7. Malek J, Mitsuhashi T, Criado JM. Kinetic analysis of solid-state processes. J Mater Res. 2001;16:1862–71.

    Article  CAS  Google Scholar 

  8. Zhou D, Schmitt EA, Zhang GG, Law D, Vyazovkin S, Wight CA, Grant DJW. Crystallization kinetics of amorphous nifedipine studied by model-fitting and model-free approaches. J Pharm Sci. 2003;92:1779–91.

    Article  CAS  Google Scholar 

  9. Benderskii VA, Makarov DE, Wight CA. Chemical dynamics at low temperatures. New York: Wiley; 1994. p. 385.

    Google Scholar 

  10. Brown ME, Dollimore D, Galwey AK. Reactions in the solid state, comprehensive chemical kinetics, vol. 22. Amsterdam: Elsevier; 1980. p. 340.

    Google Scholar 

  11. Vyazovkin S, Wight CA. Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem. 1997;101A:8279–84.

    Article  Google Scholar 

  12. Brill TB, James KJ. Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives. Chem Rev. 1993;93:2667–92.

    Article  CAS  Google Scholar 

  13. Mark HF, Bikales NM, Overberger CG, Menges G, editors. Encyclopedia of polymer science and engineering. NewYork: Wiley; 1989. p. 231, 690.

    Google Scholar 

  14. Vyazovkin S, Wight CA. Isothermal and nonisothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

  15. Dollimore D. Thermal analysis. Chem Rev. 1996;68:63–72.

    CAS  Google Scholar 

  16. Galwey AK. Is the science of thermal analysis kinetics based on solid foundations?: a literature appraisal. Thermochim Acta. 2004;413:139–83.

    Article  CAS  Google Scholar 

  17. Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19:45–60.

    Article  CAS  Google Scholar 

  18. Kotler JM, Hinman NW, Richardson CD, Scott JR. Thermal decomposition behavior of potassium and sodium jarosite synthesized in the presence of methylamine and alanine. J Therm Anal Calorim. 2010;102:23–9.

    Article  CAS  Google Scholar 

  19. Bertol CD, Cruz AP, Stulzer HK, Murakami FS, Silva MAS. Thermal decomposition behaviour of potassium and sodium jasorite synthesized in the presence of methyl amine and alanine. J Therm Anal Calorim. 2010;102:187–92.

    Article  CAS  Google Scholar 

  20. Solymosi F. Structure and stability of salts of halogen oxyacids in the solid phase. London: Wiley; 1977.

    Google Scholar 

  21. Prout EG, Tompkins FC. The thermal decomposition of potassium permanganate. Trans Faraday Soc. 1944;40:488–97.

    Article  CAS  Google Scholar 

  22. Muraleedharan K, Kannan MP, Ganga Devi T. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim. 2011;103:943–55.

    Article  CAS  Google Scholar 

  23. Muraleedharan K. Thermal decomposition kinetics of potassium iodate part I—the effect of particle size on the rate and kinetics of decomposition. J Therm Anal Calorim. 2012;109:237–45.

    Article  CAS  Google Scholar 

  24. Billington DS, Crawford HJ. Radiation damage in solids. Princeton: Princeton University Press; 1961.

    Google Scholar 

  25. Harbottle G, Maddock AG. Chemical effects of nuclear transformations in inorganic systems. Amsterdam: Elsevier; 1979. p. 39.

    Google Scholar 

  26. Mohanty SR, Pandey VM. Annealing of chemical radiation damage in inorganic solids. J Sci Ind Res. 1975;34:196–210.

    CAS  Google Scholar 

  27. Diefallah EM, Baghlaf AO, Mahfouz RM. Chemical effects of cobalt neutron capture recoils in K3Co(CN)6–K3Fe(CN)6 and K3Co(CN)6–K3Cr(CN)6 mixed crystals. J Radioanal Nucl Chem. 1985;94:109–20.

    Article  CAS  Google Scholar 

  28. Nair SMK, Jacob PD. The effect of gamma-irradiation on the thermal decomposition of magnesium bromate. J Radioanal Nucl Chem Lett. 1989;2:113–25.

    Google Scholar 

  29. Hobbs LW, Clinard FW Jr, Zinkle SJ, Ewing RC. Radiation effects in ceramics. J Nucl Mater. 1994;216:291–321.

    Article  CAS  Google Scholar 

  30. Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  31. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  32. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  33. Akahira T, Sunose T. Trans joint convention of four electrical institutes, Paper No. 246, 1969, Research Report, Chiba Institute of Technology. 1971;169:22–31.

  34. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry application to a phenol plastic. J Polym Sci C. 1963;6:183–95.

    Article  Google Scholar 

  35. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  36. Doyle CD. Series approximations to the equation of thermogravimetric data. Nature. 1965;207:290–301.

    Article  CAS  Google Scholar 

  37. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  38. Kannan MP, Muraleedharan K, Ganga Devi T. Numerical data for the evaluation of kinetic parameters of solid state decompositions by the non-isothermal method. Thermochim Acta. 1991;186:265–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muraleedharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muraleedharan, K. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim 114, 491–496 (2013). https://doi.org/10.1007/s10973-013-3034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3034-2

Keywords

Navigation