Skip to main content
Log in

Thermal studies of furosemide–caffeine binary system that forms a cocrystal

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal techniques, differential scanning calorimetry (DSC), and hot stage microscopy (HSM) have been used to study the interactions between furosemide and caffeine that are known to form a 1:1 cocrystal. This system has been used as an example to study the probable mechanism of cocrystal formation when the individual components, which are polymorphic, are heated. The study indicates that the phase transition of the low temperature stable polymorph of furosemide initiates cocrystal formation. This result suggests increased mass transfer rate can trigger cocrystal formation. The binary phase diagram (composition–temperature plots) of furosemide–cocrystal–caffeine system was determined from the DSC curves. The results imply that the cocrystal forms eutectic with caffeine but not with furosemide. This study has thus exemplified the use of DSC in understanding binary phase system where the two components form a cocrystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aakeröy CB, Salmon DJ. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm. 2005;7:439–48.

    Article  Google Scholar 

  2. Schultheiss N, Newman AL. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009;9(6):2950–67.

    Article  CAS  Google Scholar 

  3. Childs SL, Chyall LJ, Dunlap JT, Smolenskaya VN, Stahly BC, Stahly PG. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids, molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. J Am Chem Soc. 2004;126:13335–42.

    Article  CAS  Google Scholar 

  4. Cheney ML, Weyna DR, Shan N, Hanna M, Wojtas L, Zaworotko MJ. Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J Pharm Sci. 2011;100(6):2172–81.

    Article  CAS  Google Scholar 

  5. Good DJ, Rodriguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des. 2009;9(5):2252–64.

    Article  CAS  Google Scholar 

  6. Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm. 2011;419:1–11.

    Article  CAS  Google Scholar 

  7. Berry DJ, Seaton CC, Clegg W, Harrington RW, Coles SJ, Horton PN, Hursthouse MB, Storey R, Jones W, Frisˇcˇic′ T, Blagden N. Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst Growth Des. 2008;8(5):1697–712.

    Article  CAS  Google Scholar 

  8. Monissette SL, Almarsson O, Peterson ML, Remenar JF, Read MJ, Lemmo AV, Ellis S, Cima MJ, Gardner CR. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev. 2004;56(3):275–300.

    Article  Google Scholar 

  9. Frišcˇic′ T, Trask AV, Jones W, Motherwell WDS. Screening for inclusion compounds and systematic construction of three-component solids via liquid-assisted grinding. Angew Chem Int Ed. 2006;45:7546–50.

    Google Scholar 

  10. Trask AV, Motherwell WDS, Jones W. Solvent-drop grinding: green polymorph control of cocrystallisation. Chem Commun. 2004;7:890–1.

    Article  Google Scholar 

  11. Zhang GGZ, Henry RF, Borchardt TB, Lou XC. Efficient co-crystal screening using solution-mediated phase transformation. J Pharm Sci. 2007;96(5):990–5.

    Article  CAS  Google Scholar 

  12. Bettinetti G, Caira MR, Callegari A, Merli M, Sorrenti M, Tadini C. Structure and solid-state chemistry of anhydrous and hydrated crystal forms of the trimethoprim-sulfamethoxypyridazine 1:1 molecular complex. J Pharm Sci. 2000;89(4):478–89.

    Article  CAS  Google Scholar 

  13. Davis RE, Lorimer KA, Wilowski MA, Rivers JH, Wheeler KA, Bowers J. Studies of phase relationships in cocrystal systems. ACA Trans. 2004;39:41–61.

    CAS  Google Scholar 

  14. Stahly PG. Diversity in single-and multiple-component crystals: the search for and prevalence of polymorphs and co-crystals. Cryst Growth Des. 2007;7(6):1007–26.

    Article  CAS  Google Scholar 

  15. Lu E, Rodriguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. CrystEngComm. 2008;10:665–8.

    Article  CAS  Google Scholar 

  16. Chadwick K, Davey R, Cross W. How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine. CrystEngComm. 2007;9(9):732–4.

    Article  CAS  Google Scholar 

  17. Rothenberg G, Downie AP, Raston CL, Scott JL. Understanding solid/solid organic reactions. J Am Chem Soc. 2001;123:8701–8.

    Article  CAS  Google Scholar 

  18. Goud NR, Gangavaram S, Suresh S, Pal S, Manjunatha SG, Nambiar S, Nangia A. Novel furosemide cocrystals and selection of high solubility drug forms. J Pharm Sci. 2012;101(2):664–80.

    Article  CAS  Google Scholar 

  19. Jagadeesh BN, Cherukuvada S, Thakuria R, Nangia A. Conformational and synthon polymorphism in furosemide. Cryst Growth Des. 2010;10(4):1979–89.

    Article  Google Scholar 

  20. Matsuda Y, Tatsumi E. Physicochemical characterization of furosemide modifications. Int J Pharm. 1990;60:11–26.

    Article  CAS  Google Scholar 

  21. da Silva RC, Semaan FS, Novák C, Cavalheiro ETG. Thermal behavior of furosemide. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-2058-8.

    Google Scholar 

  22. Babilev PV, Chiripitko VV. Physicochemical and biopharmaceutic study of polymorphous caffeine modifications. Farm Zh. 1985;2:61–4.

    Google Scholar 

  23. Mazel V, Delplace C, Busignies V, Faivre V, Tchoreloff P, Yagoubi N. Polymorphic transformation of anhydrous caffeine under compression and grinding: a re-evaluation. Drug Dev Ind Pharm. 2011;37(7):832–40.

    Article  CAS  Google Scholar 

  24. Edwards HGM, Lawson E, de Matas M, Shields L, York P. Metamorphosis of caffeine hydrate and anhydrous caffeine. J Chem Soc Perkin Trans. 1997;2:1985–90.

    Article  Google Scholar 

  25. Pirttimäki J, Laine E, Ketolainen J, Paronen P. Effects of grinding and compression on crystal structure of anhydrous caffeine. Int J Pharm. 1993;95:93–9.

    Article  Google Scholar 

  26. Hedoux A, Decroix A, Guinet Y, Paccaou L, Derollez P, Descamps M. Low- and high-frequency Raman investigations on caffeine: polymorphism, disorder and phase transformation. J Phys Chem B. 2011;115(19):5746–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmistha Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, S., Roopa, B.N., Abu, K. et al. Thermal studies of furosemide–caffeine binary system that forms a cocrystal. J Therm Anal Calorim 115, 2261–2268 (2014). https://doi.org/10.1007/s10973-013-3031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3031-5

Keywords

Navigation