Skip to main content
Log in

Validation of improved simple method for prediction of activation energy of the thermal decomposition of energetic compounds

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study presents a new simple model for predicting activation energy of the thermolysis of various classes of energetic compounds. The new model can help to elucidate the cause of thermal stability and, therefore, shelf life of some energetic compounds. The methodology assumes that activation energy of an energetic compound with general formula C a H b N c O d can be expressed as a function of optimized elemental composition as well as the contribution of specific molecular structural parameters. The new correlation has the root mean square and the average deviations of 9.8 and 7.4 kJ mol−1, respectively, for 86 energetic compounds with different molecular structures. The proposed new method is also tested for 20 energetic compounds, which have complex molecular structures, e.g. 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane, 2,4,6-tris(2,4,6-Trinitrophenyl)-1,3,5-triazine and 1-(2,4,6-Trinitrophenyl)-5,7-dinitrobenzotriazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal JP. Recent trends in high energy materials. Prog Energy Combust Sci. 1998;24:1–30.

    Article  CAS  Google Scholar 

  2. Agrawal JP, Hodgson R. Organic chemistry of explosives. England: Wiley; 2007.

    Google Scholar 

  3. Agrawal JP. High energy materials: propellants, explosives and pyrotechnics. Weinheim: Wiley; 2010.

    Book  Google Scholar 

  4. Klapötke TM. Chemistry of high-energy materials. Berlin: Walter De Gruyter; 2011.

    Google Scholar 

  5. Akhavan J. The chemistry of explosives. Cambridge: The Royal Society of Chemistry; 1998.

    Google Scholar 

  6. Politzer P, Murray JS, editors. Energetic materials. Part 2: detonation, combustion. Amesterdam: Elsevier; 2003.

  7. Sikder AK, Maddala G, Agrawal JP, Singh H. Important aspects of behaviour of organic energetic compounds: a review. J Hazard Mater A. 2001;84(1):1–26.

    Article  CAS  Google Scholar 

  8. Keshavarz MH. A simple theoretical prediction of detonation velocities of nonideal explosives only from elemental composition (Chapter 9). In: Warey PB, editor. New research on hazardous materials. New York: Nova Science Publishers; 2007. p. 293–310.

    Google Scholar 

  9. Keshavarz MH. Important aspects of sensitivity of energetic compounds: a simple novel approach to predict electric spark sensitivity (Chapter 4). In: Janssen TJ, editor. Explosive materials: classification, composition and properties. New York: Nova Science Publishers; 2011. p. 179–201.

    Google Scholar 

  10. Keshavarz MH. Research progress on heats of formation and detonation of energetic compounds (Chapter 10). In: Brar SK, editor. Hazardous materials: types, risks, and control. NewYork: Nova Science Publishers; 2011. p. 339–59.

    Google Scholar 

  11. Krabbendam-LaHaye ELM, de Klerk WPC, Krämer RE. The kinetic behavior and thermal stability of commercially available explosives. J Thermal Anal Calorim. 2005;80:495–501.

    Article  CAS  Google Scholar 

  12. Bunyan P, Baker C, Turner N. Application of heat conduction calorimetry to high explosives. Thermochim Acta. 2003;401:9–16.

    Article  CAS  Google Scholar 

  13. Keshavarz MH, Moradi S, Ebrahimi Saatluo B, Rahimi H, Madram A. A simple accurate model for prediction of deflagration temperature of energetic compounds. J Thermal Anal Calorim. 2012;. doi:10.1007/s10973-012-2717-4.

    Google Scholar 

  14. Zeman S. Analysis and prediction of the arrhenius parameters of low temperature thermolysis of nitramines by means of the 15N NMR spectroscopy. Thermochim Acta. 1999;333:121–9.

    Article  CAS  Google Scholar 

  15. Zeman S. New aspects of initiation reactivities of energetic materials demonstrated on nitramines. J Hazard Mater A. 2006;132:155–64.

    Article  CAS  Google Scholar 

  16. Zeman S, Friedl Z. Relationship between electronic charges at nitrogen atoms of nitro groups and thermal reactivity of nitramines. J Thermal Anal Calorim. 2004;77(1):217–22.

    Article  CAS  Google Scholar 

  17. Sorescu DC, Rice BM, Thompson DL. Molecular packing and molecular dynamics study of the transferability of a generalized nitramine intermolecular potential to non-nitramine crystals. J Phys Chem A. 1999;103(8):989–98.

    Article  CAS  Google Scholar 

  18. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  19. Lee JS, Hsu CK, Chang CL. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX. Thermochim Acta. 2002;392–393:173–6.

    Article  Google Scholar 

  20. Zhao-Xu C, Heming X. Impact sensitivity and activation energy of pyrolysis for tetrazole compounds. Int J Quantum Chem. 2000;79:350–7.

    Article  Google Scholar 

  21. Pourmortazavi SM, Rahimi-Nasrabadi M, Kohsari I, Hajimirsadeghi SS. Non-isothermal kinetic studies on thermal decomposition of energetic materials. J Thermal Anal Calorim. 2012;110(2):857–63.

    Article  CAS  Google Scholar 

  22. Cusu JP, Musuc AM, Matache M, Oancea D. Kinetics of exothermal decomposition of some ketone-2,4-dinitrophenylhydrazones. J Thermal Anal Calorim. 2012;110(3):1259–66.

    Article  Google Scholar 

  23. Sinditskii VP, Egorshev VY. Thermal decomposition of NTO: an explanation of the high activation energy. Propellant Explos Pyrot. 2007;32(4):277–87.

    Article  CAS  Google Scholar 

  24. Oxley JC, Smith JL, Ye H. Thermal stability studies on a homologous series of nitroarenes. J Phys Chem. 1995;99:9593–602.

    Article  CAS  Google Scholar 

  25. Oxley JC, Kooh AB, Szekeres R, Zheng W. Mechanisms of nitramine thermolysis. J Phys Chem. 1994;98:7004–8.

    Article  CAS  Google Scholar 

  26. Zeman S, Dimun M, Truchlik Š. The relationship between kinetic data of the low-temperature thermolysis and the heats of explosion of organic polynitro compounds. Thermochim Acta. 1984;78:181–209.

    Article  CAS  Google Scholar 

  27. Zeman S. Thermal stabilities of polynitroaromatic compounds and their derivatives. Thermochim Acta. 1979;31:269–83.

    Article  CAS  Google Scholar 

  28. Zeman S. Non-isothermal differential thermal analysis in the study of the initial state of the thermal decomposition of polynitroaromatic compounds in the condensed state. Thermochim Acta. 1980;39:117–24.

    Article  CAS  Google Scholar 

  29. Zeman S. The thermoanalytical study of some amino derivatives of 1,3,5-trinitrobenzene. Thermochim Acta. 1993;216:157–68.

    Article  CAS  Google Scholar 

  30. Zeman S. Relationship between the Arrhenius parameters of the low temperature thermolysis and the 13C and 15N chemical shifts of nitramines. Thermochim Acta. 1992;202:191–200.

    Article  CAS  Google Scholar 

  31. Zeman S. Kinetic compensation effect and thermolysis mechanisms of organic polynitroso and polynitro compounds. Thermochim Acta. 1997;290:199–217.

    Article  CAS  Google Scholar 

  32. Zeman S. Modified Evans–Polanyi–Semenov relationship in the study of chemical micromechanism governing detonation initiation of individual energetic materials. Thermochim Acta. 2002;384:137–54.

    Article  CAS  Google Scholar 

  33. Semenov NN. O nekotorykh problemakh khimicheskoy kinetiki i reaksionnoy sposobnosti (some problems of chemical kinetics and of reaction capability). Moscow: USSR Academy of Sciences; 1958. p. 41–101.

    Google Scholar 

  34. Zavitas AA. Chemtech. Washington: ACS; 1972. p. 434.

    Google Scholar 

  35. Keshavarz MH, Pouretedal HR, Shokrolahi A, Zali A, Semnani A. Predicting activation energy of thermolysis of polynitroarenes through molecular structure. J Hazard Mater. 2008;160(1):142–7.

    Article  CAS  Google Scholar 

  36. Keshavarz MH. Simple method for prediction of activation energies of the thermal decomposition of nitramines. J Hazard Mater. 2009;162(2–3):1557–62.

    Article  CAS  Google Scholar 

  37. Keshavarz MH. A new method to predict activation energies of nitroparaffins. Indian J Eng Mater S. 2009;16(6):429–32.

    Google Scholar 

  38. Palm WJ III. Introduction to matlab for engineers. New York: McGraw-Hil; 2005. p. 4–328.

    Google Scholar 

  39. Oftadeh M, Hamadanian Khozani M, Radhoosh M, Keshavarz MH. DFT molecular orbital calculations of initial step in decomposition pathways of TNAZ and some of its derivatives with –F, –CN and –OCH3 groups. Comput Theor Chem. 2011;964(1–3):262–8.

    Article  CAS  Google Scholar 

  40. Keshavarz MH, Motamedoshariati H, Moghayadnia R, Ghanbarzadeh M, Nazari HR, Azarniamehraban J. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I. J Hazard Mater. 2009;172(2–3):1218–28.

    Article  CAS  Google Scholar 

  41. Keshavarz MH, Motamedoshariati H, Moghayadnia R, Ghanbarzadeh M, Azarniamehraban J. A new computer code for assessment of energetic materials with crystal density, condensed phase enthalpy of formation, and activation energy of thermolysis. Propellant Explos Pyrot. 2012;. doi:10.1002/prep.201100156.

    Google Scholar 

  42. Yan QL, Zeman S. Theoretical evaluation of sensitivity and thermal stability for high explosives based on quantum chemistry methods: a brief review. Int J Quantum Chem. 2012;. doi:10.1002/qua.24209.

    Google Scholar 

  43. Yan QL, Zeman S, Šelešovský J, Svoboda R, Elbeih A, Málek J. The effect of crystal structure on the thermal reactivity of CL-20 and its C4-bonded explosives. J Thermal Anal Calorim. 2012;. doi:10.1007/s10973-012-2629-3.

    Google Scholar 

  44. Wang Q, Wang J, Larranaga MD. Simple relationship for predicting onset temperatures of nitro compounds in thermal explosions. J Thermal Anal Calorim. 2012;. doi:10.1007/s10973-012-2377-4.

    Google Scholar 

  45. Shanko VN, Stepanov RS. Fizicheskaya Khimia (physical chemistry). 1974; 1, Krasnoyarsk, 190.

  46. Dubovitskii FI, Korsoonskii BL. Kinetika termicheskogo razlozheniya Nnitrosoedinenii (Kinetics of thermal decomposition of N-nitrocompounds). Usp Khim. 1981;50:1828–34.

    Article  CAS  Google Scholar 

  47. Sitonina GV, Korsoonskii BL, Pyatakov NF, Shvayko VG, Abdrakhmanov ISh, Dubovitskii FI Izv. Akad Nauk SSSR, Ser Khim 1979; 311.

  48. Robertson AJB. The thermal decomposition of explosives. Part II: cyclotrimethylenetrinitramine and cyclotetramethylenetetranitramine. Trans Faraday Soc. 1949;45:85–92.

    Article  CAS  Google Scholar 

  49. Rogers RN. Differential scanning calorimetric determination of kinetics constants of systems that melt with decomposition. Thermochim Acta. 1972;3:437–47.

    Article  CAS  Google Scholar 

  50. Brill TB, Karpowicz RJ. Solid phase transition kinetics: the role of intermolecular forces in the condensed-phase decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J Phys Chem. 1982;86:4260–5.

    Article  CAS  Google Scholar 

  51. Rongzu H, Zhengouan Y, Yanjun L. The determination of the most probable mechanism function and three kinetic parameters of exothermic decomposition reaction of energetic materials by a. Thermochim Acta. 1988;123:135–51.

    Article  Google Scholar 

  52. Lbbecke S, Bohn MA, Pfeil A, Krause H. Proceedings of the 29th International Annual Conference, ICT, Karlsruhe, 1998;145/1.

  53. Zeman S, Friedl Z, Roháč M. Molecular structure aspects of initiation of some highly thermostable polynitro arenes. Thermochim Acta. 2006;451:105–14.

    Article  CAS  Google Scholar 

  54. Nazin GM, Manelis GB. lzv Akad Nauk SSSR. Ser Khim. 1972;811.

  55. Nazin GM, Manelis GB, Dubovitskii FI. Thermal decomposition of aliphatic nitro-compounds. Russ Chem Rev. 1968;37(8):603–12.

    Article  Google Scholar 

  56. Nazin GM, Manelis GB, Dubovitskii FI. lzv Akad Nauk SSSR. Ser Khim, 1968; 389.

Download references

Acknowledgements

We would like to thank the research committee of Iran University of Science and Technology for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Keshavarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keshavarz, M.H., Zohari, N. & Seyedsadjadi, S.A. Validation of improved simple method for prediction of activation energy of the thermal decomposition of energetic compounds. J Therm Anal Calorim 114, 497–510 (2013). https://doi.org/10.1007/s10973-013-3022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3022-6

Keywords

Navigation