Skip to main content
Log in

Crystallization kinetics of amorphous Se

Part 1. Interpretation of kinetic functions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry was used to study crystallization behavior in selenium glass under non-isothermal conditions. The crystallization kinetics were described in terms of the Johnson–Mehl–Avrami nucleation-growth model; activation energies and kinetic parameter m JMA were determined. The study was performed in dependence with particle size, so that a novel approach to the evaluation of crystallization kinetics—the advanced interpretation of characteristic kinetic functions—could be employed. Extensive discussion of all aspects of a full-scale kinetic study for a complex crystallization process was performed within the framework of the introduced conception. The complexity of the crystallization process was found to be represented by very closely overlapping consecutive competing surface and bulk nucleation-growth mechanisms. Mutual interactions of both mechanisms as well as all other observed effects were explained in terms of thermal gradients, surface crystallization centers arising from the sample preparation treatments and a changing amount of volume nuclei originating from the combination of the pre-nucleation period and the actual glass preparation phase. The main objective of the study is to demonstrate the extent of so-far neglected information hidden in the characteristic kinetic functions and introduce a convenient tool for its acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ogorelec Z, Tonejc A. Crystallization of glassy selenium during its plastic deformation. Mater Lett. 2000;42:81–5.

    Article  CAS  Google Scholar 

  2. Bureau B, Troles J, Le Floch M, Smektala F, Lucas J. Medium range order studied in selenide glasses by Se-77 NMR. J Non-Cryst Sol. 2003;326–327:58–63.

    Article  Google Scholar 

  3. Elliott A. Medical imaging. Nucl Instrum Meth Phys Res A. 2005;546:1–13.

    Article  CAS  Google Scholar 

  4. Kasap SO, Rowlands JA. X-ray photoconductors and stabilized a-Se for direct conversion digital flat-panel X-ray image-detectors. J Mater Sci: Mater Electron. 2000;11:179–98.

    Article  CAS  Google Scholar 

  5. Holubová J, Černošek Z, Černošková E, Černá A. Crystallization of supercooled liquid of selenium: The comparison of kinetic analysis of both isothermal and non-isothermal DSC data. Mater Lett. 2006;60:2429–32.

    Article  Google Scholar 

  6. Joraid AA, Alamri SN, Abu-Sehly AA. Model-free method for analysis of non-isothermal kinetics of a bulk sample of selenium. J Non-Cryst Sol. 2008;354:3380–7.

    Article  CAS  Google Scholar 

  7. Abu-Sehly AA, Alamri SN, Joraid AA. Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples. J Alloys Compd. 2009;476:348–51.

    Article  CAS  Google Scholar 

  8. Afify N. A new method to study the crystallization or chemical reaction kinetics using thermal analysis technique. J Phys Chem Sol. 2008;69:1691–7.

    Article  CAS  Google Scholar 

  9. Joraid AA. The effect of temperature on non-isothermal crystallization kinetics and surface structure on selenium thin films. Phys B. 2007;390:263–9.

    Article  CAS  Google Scholar 

  10. Joraid AA, Abu-Sehly AA, Alamri SN. Isoconversional kinetic analysis of the crystallization phases of amorphous selenium thin films. Thin Sol Films. 2009;517:6137–41.

    Article  CAS  Google Scholar 

  11. Svoboda R, Málek J. Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta. 2011;526:237–51.

    Article  CAS  Google Scholar 

  12. Svoboda R, Málek J. Extended study of crystallization kinetics for Se-Te glasses. J Therm Anal Calorim; 2012. doi:10.1007/s10973-012-2347-x.

  13. Svoboda R, Málek J. Applicability of Fraser–Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim; 2012. doi:10.1007/s10973-012-2445-9.

  14. Šesták J. Thermophysical properties of solids. Their measurements and theoretical analysis. Amsterdam: Elsevier; 1984.

    Google Scholar 

  15. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICATC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  16. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  17. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. New York: Wiley; 1964.

    Google Scholar 

  18. Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.

    Article  Google Scholar 

  19. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  20. Avrami M. Kinetics of phase change I—general theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  21. Avrami M. Kinetics of phase change. II—Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;7:212–24.

    Article  Google Scholar 

  22. Avrami M. Granulation, phase change, and microstructure—kinetics of phase change III. J Chem Phys. 1941;7:177–84.

    Article  Google Scholar 

  23. Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min (Metall) Eng. 1939;135:416–42.

    Google Scholar 

  24. Svoboda R, Krbal M, Málek J. Crystallization kinetics in Se–Te glassy system. J Non-Cryst Sol. 2011;357:3123–9.

    Article  CAS  Google Scholar 

  25. Málek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta. 1989;138:337–46.

    Article  Google Scholar 

  26. Šesták J. Science of heat and thermophysical studies: a generalized approach to thermal analysis. Amsterdam: Elsevier; 2005.

    Google Scholar 

  27. Svoboda R, Málek J. Particle size influence on crystallization behavior of Ge2Sb2Se5 glass. J Non-Cryst Sol. 2012;358:276–84.

    Article  CAS  Google Scholar 

  28. Ray CS, Day DE. Identifying internal and surface crystallization by differential thermal analysis for the glass-to-crystal transformations. Thermochim Acta. 1996;280(281):163–74.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation under project No. P106/11/1152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Svoboda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 224 kb)

Supplementary material 2 (PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svoboda, R., Málek, J. Crystallization kinetics of amorphous Se. J Therm Anal Calorim 114, 473–482 (2013). https://doi.org/10.1007/s10973-012-2922-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2922-1

Keywords

Navigation