Skip to main content
Log in

The effect of temperature on the mechanical properties of a protein-based biopolymer network

The eggshell membrane

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Several studies have shown that eggshell membrane (ESM) is a suitable biomaterial with potential applications in biomedicine such as wound repair and cell culture. In order to control and improve the use of ESM for biomedical applications their physical and structural properties must be known. In this paper, we have studied the effect of temperature on the mechanical properties of the ESM. Atomic force microscopy was used to assess the morphology of the ESM. The mechanical properties of the membranes were studied by means of uniaxial tensile tests carried out at four different temperatures. Differential scanning calorimetry and thermo-gravimetrical analysis were used to assess the thermal transitions of the ESM and the influence of the water content on its thermal behavior. The Young’s modulus showed a linear inverse dependence with regard to the temperature of the sample. A peak associated to the thermal denaturation of collagen was observed in the DSC tests of the membrane. These peaks showed a dependence on the water content of the specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nys Y, Gautron J, McKee MD, Gautron JM, Hincke MT. Biochemical and functional characterisation of eggshell matrix proteins in hens. World Poult Sci J. 2001;57:401–13.

    Article  Google Scholar 

  2. Zhao Y, Chi Y. Characterization of collagen from eggshell membrane. Biotechnology. 2009;8:254–8.

    Article  CAS  Google Scholar 

  3. Maeda K, Sasaaki Y. An experience of hen-egg membrane as a biological dressing. Burns. 1984;8:313–6.

    Article  Google Scholar 

  4. Yang J, Chuang S, Yang W, Tsay P. Egg membrane as a new biological dressing in split-thickness skin graft dono sites: a preliminary clinical evaluation. Chang Gung Med J. 2003;26:153–8.

    Google Scholar 

  5. Tavassoli M. Effect of the substratum on the growth of CFU-c in continuous marrow culture. Experientia. 1983;39:411–2.

    Article  CAS  Google Scholar 

  6. Durmus E, Celik I, Ozturk A, Ozkan Y, Aydin MF. Evaluation of the potential beneficial effects of ostrich eggshell combined with eggshell membranes in healing of cranial defects in rabbits. J Int Med Res. 2003;31:223–30.

    CAS  Google Scholar 

  7. Choi MMF, Pang WSH, Xiao D, Wu X. An optical glucose biosensor with eggshell membrane as an enzyme immobilisation platform. Analyst. 2001;126:1558–63.

    Article  CAS  Google Scholar 

  8. Yang D, Qi L, Ma J. Hierarchically ordered networks comprising crystalline ZrO2 tubes through sol–gel mineralization of eggshell membranes. J Mater Chem. 2003;13:1119–23.

    Article  CAS  Google Scholar 

  9. Ishikawa S, Suyama K, Arihara K, Itoh M. Uptake and recovery of gold ions from electroplating wastes using eggshell membrane. Bioresour Technol. 2002;81:201–6.

    Article  CAS  Google Scholar 

  10. Torres FG, Troncoso OP, Piaggio F, Hijar A. Structure-property relationships of a biopolymer network: the eggshell membrane. Acta Biomater. 2010;6:3687–93.

    Article  CAS  Google Scholar 

  11. Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. Cambridge: Cambridge University Press; 1999.

    Google Scholar 

  12. Watts DC, El Mowafy OM, Grant AA. Temperature-dependence of compressive properties of human dentin. J Dent Res. 1987;66:29–32.

    Article  CAS  Google Scholar 

  13. Bonser RHC, Purslow PP. The Young’s modulus of feather keratin. J Exp Biol. 1995;198:1029–33.

    CAS  Google Scholar 

  14. Chae Y, Aguilar G, Lavernia EJ, Wong BJF. Characterization of temperature dependent mechanical behavior of cartilage. Lasers Surg Med. 2003;32:271–8.

    Article  Google Scholar 

  15. Vollrath F, Porter D. Spider silk as archetypal protein elastomer. Soft Matter. 2006;2:377–85.

    Article  CAS  Google Scholar 

  16. Torres FG, Troncoso OP, Amaya E. The effect of water on the thermal transitions of fish scales from Arapaima gigas. Mater Sci Eng C. 2012;32:2212–4.

    Article  CAS  Google Scholar 

  17. Buehler MJ, Wong SY. Entropic Elasticity controls nanomechanics of single tropocollagen molecules. Biophys J. 2007;93:37–43.

    Article  CAS  Google Scholar 

  18. Misof K, Rapp G, Fratzl P. A new molecular model for collagen elasticity based on synchrotron X-ray scattering evidence. Biophys J. 1997;72:1376–81.

    Article  CAS  Google Scholar 

  19. Fratzl P, Misof K, Zizak I, Rapp G, Amenitsch H, Bernstorff S. Fibrillar structure and mechanical properties of collagen. J Struct Biol. 1997;122:119–22.

    Article  Google Scholar 

  20. Freed AD, Doehring TD. Elastic model for crimped collagen fibrils. J Biomech Eng. 2005;127:587–93.

    Article  Google Scholar 

  21. Roeder BA, Kokini K. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng. 2002;124:214–22.

    Article  Google Scholar 

  22. Lagakos N, Jarzynski J, Cole JH, Bucaro JA. Frequency and temperature dependence of elastic moduli of polymers. J Appl Phys. 1986;59:4017–31.

    Article  CAS  Google Scholar 

  23. Feughelman M. Natural protein fibers. J Appl Polym Sci. 2002;83:489–507.

    Article  CAS  Google Scholar 

  24. Miles CA, Bailey AJ. Thermally labile domains in the collagen molecule. Micron. 2001;32:325–32.

    Article  CAS  Google Scholar 

  25. Wiegand N, Vámhidy L, Lőrinczy D. Differential scanning calorimetric examination of ruptured lower limb tendons in human. J Therm Anal Calorim. 2010;101:487–92.

    Article  CAS  Google Scholar 

  26. Willett TL, Labow RS, Avery NC, Michael LJ. Increased proteolysis of collagen in an in vitro tensile overload tendon model. Ann Biomed Eng. 2007;35:1961–72.

    Article  Google Scholar 

  27. Trębacz H, Wójtowicz K. Thermal stabilization of collagen molecules in bone tissue. Int J Biol Macromol. 2005;37:257–62.

    Article  Google Scholar 

  28. Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J. 1999;76:3243–52.

    Article  CAS  Google Scholar 

  29. Bigi A, Cojazzi G, Roveri N, Koch MHJ. Differential scanning calorimetry and X-ray diffraction study of tendon collagen thermal denaturation. Int J Biol Macromol. 1987;9:363–7.

    Article  CAS  Google Scholar 

  30. Miles CA, Burjanadze TV, Bailey AJ. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. J Mol Biol. 1995;245:437–46.

    Article  CAS  Google Scholar 

  31. Bella J, Brodsky B, Berman HM. Hydration structure of a collagen peptide. Structure. 1995;3:893–906.

    Article  CAS  Google Scholar 

  32. Sionkowska A. Modification of collagen films by ultraviolet irradiation. Polym Degrad Stab. 2000;68:147–51.

    Article  CAS  Google Scholar 

  33. Sionkowska A, Kamińska A. Thermal helix-coil transition in UV irradiated collagen from rat tail tendon. Int J Biol Macrol. 1999;24:337–40.

    Article  CAS  Google Scholar 

  34. Miculescu F, Stan GE, Ciocan LT, Miculescu M, Berbecaru A, Antoniac I. Cortical bone as resource for producing biomimetic materials for clinical use. Dig J Nanomater Biostruct. 2012;7:1667–77.

    Google Scholar 

  35. Kopp J, Bonnet M, Renou JP. Effect of cross-linking on collagen-water interactions (a DSC investigation). Matrix. 1990;9:443–50.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Vice-Rectorate for Research of the Catholic University of Peru (VRI-PUCP) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando G. Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, F.G., Troncoso, O.P. & Montes, M.R. The effect of temperature on the mechanical properties of a protein-based biopolymer network. J Therm Anal Calorim 111, 1921–1925 (2013). https://doi.org/10.1007/s10973-012-2915-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2915-0

Keywords

Navigation