Skip to main content
Log in

Increased Proteolysis of Collagen in an In Vitro Tensile Overload Tendon Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Presently, there is a lack of fundamental understanding regarding changes in collagen’s molecular state due to mechanical damage. The bovine tail tendon (BTT; steers approximately 30 months) was characterized and used as an in vitro model for investigating the effect of tensile mechanical overload on collagen susceptibility to proteolysis by acetyltrypsin and α-chymotrypsin. Two strain rates with a 1000-fold difference (0.01 and 10 s−1) were used, since molecular mechanisms that determine mechanical behavior were presumed to be strain rate dependent. First, it was determined that the BTTs were normal but immature tendons. Water content and collagen content (approx. 60% of wet weight and 80% of dry weight, respectively) and mechanical properties were all within the expected range. The collagen crosslinking was dominated by the intermediate crosslink hydroxylysinonorleucine. Second, tensile overload damage significantly enhanced proteolysis by acetyltrypsin and, to a lesser degree, by α-chymotrypsin. Interestingly, proteolysis by acetyltrypsin was greatest for specimens ruptured at 0.01 s−1 and seemed to occur throughout the specimen. Understanding damage is important for insight into injuries (as in sports and trauma) and for better understanding of collagen fiber stability, durability, and damage mechanisms, aiding in the development of durable tissue-based products for mechanically demanding surgical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

BTT:

Bovine tail tendon

DSC:

Differential scanning calorimetry

HHL:

Histidinohydroxylysinonorleucine

HIT:

Hydrothermal isometric tension

HLKNL:

Hydroxylysinoketonorleucine

HLNL:

Hydroxylysinonorleucine

NaBH4 :

Sodium borohydride

OH-Pyr:

Hydroxylysyl-pyridinoline

PMSF:

Phenylmethylsulfonyl fluoride

RGD:

Arginine–glycine–aspartic acid

TLD:

Thermally labile domain

TLCK:

1-chloro-3-tosylamido-7-amino-2-heptanone

UTS:

Ultimate tensile stress

A :

Specimen cross-sectional area

ε :

Strain

F :

Force

L :

Length

σ :

True stress

T d :

Denaturation temperature

T o :

Onset temperature

References

  1. Amiel D., J. B. Kleiner Biochemistry of tendon and ligament. In: Nimni M. E. (ed) Collagen. Boca Raton, Fl: CRC Press Inc., 1988, pp. 223–247

    Google Scholar 

  2. Avery N. C., A. J. Bailey Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. Scand. J. Med. Sci. Sport. 15:231–240, 2005

    Article  CAS  Google Scholar 

  3. Azangwe G., K. J. Mathias, D. Marshall, Macro and microscopic examination of the ruptured surfaces of anterior cruciate ligaments of rabbits. J. Bone Joint Surg. Br. 82:450–456, 2000

    Article  PubMed  CAS  Google Scholar 

  4. Baer E., J. J. Cassidy, A. Hiltner Hierarchical structure of collagen, its relationship to the physical properties of tendon. In: Nimni M. E. (ed) Collagen. Boca Raton: CRC Press, 1989, pp. 177–199

    Google Scholar 

  5. Bailey A. J. Molecular mechanisms of ageing in connective tissues. Mech. Ageing Dev. 122:735–755, 2001

    Article  PubMed  CAS  Google Scholar 

  6. Bailey A. J., D. Lister Thermally labile cross-links in native collagen. Nature 220:280–281, 1968

    Article  PubMed  CAS  Google Scholar 

  7. Bank R. A., M. Krikken, B. Beekman, R. Stoop, A. Maroudas, F. P. Lafeber, J. M. Te Koppele A simplified measurement of degraded collagen in tissues: application in healthy, fibrillated and osteoarthritic cartilage. Matrix Biol. 16:233–243, 1997

    Article  PubMed  CAS  Google Scholar 

  8. Bank R. A., J. M. Tekoppele, G. Oostingh, B. L. Hazleman, G. P. Riley Lysylhydroxylation and non-reducible crosslinking of human supraspinatus tendon collagen: changes with age and in chronic rotator cuff tendinitis. Ann. Rheum. Dis. 58:35–41, 1999

    PubMed  CAS  Google Scholar 

  9. Berg R. A. Determination of 3- and 4-hydroxyproline. Methods Enzymol. 82 Pt A:372–398, 1982

    PubMed  CAS  Google Scholar 

  10. Bershtein V. A., V. M. Egorov Differential Scanning Calorimetry of Polymers: Physics, Chemistry, Analysis, Technolgoy. Ellis Horwood, New York, 1994

    Google Scholar 

  11. Bruckner P., D. J. Prockop Proteolytic enzymes as probes for the triple-helical conformation of procollagen. Anal. Biochem. 110:360–368, 1981

    Article  PubMed  CAS  Google Scholar 

  12. Burjanadze T. V. Hydroxyproline content and location in relation to collagen thermal stability. Biopolymers 18:931–938, 1979

    Article  PubMed  CAS  Google Scholar 

  13. Chen S. S., N. T. Wright, J. D. Humphrey Heat-induced changes in the mechanics of a collagenous tissue: Isothermal, isotonic shrinkage. J. Biomech. Eng. 120:382–388, 1998

    PubMed  CAS  Google Scholar 

  14. Cowan P., A. North, J. Randall X-ray diffraction studies of collagen fibres. Symp. Soc. Exp. Biol. 9:115–126, 1955

    Google Scholar 

  15. Crowninshield R. D., M. H. Pope The strength and failure characteristics of rat medial collateral ligaments. J. Trauma. 16:99–105, 1976

    PubMed  CAS  Google Scholar 

  16. Danto M. I., S. L. Woo The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J. Orthop. Res. 11:58–67, 1993

    Article  PubMed  CAS  Google Scholar 

  17. Eastoe J. E. The amino acid composition of mammalian collagen and gelatin. Biochem. J. 61:589–600, 1955

    PubMed  CAS  Google Scholar 

  18. Ellsmere J. C., R. A. Khanna, J. M. Lee Mechanical loading of bovine pericardium accelerates enzymatic degradation. Biomaterials 20:1143–1150, 1999

    Article  PubMed  CAS  Google Scholar 

  19. Fratzl P., K. Misof, I. Zizak, G. Rapp, H. Amenitsch, S. Bernstorff Fibrillar structure and mechanical properties of collagen. J. Struct. Biol. 122:119–122, 1998

    Article  PubMed  CAS  Google Scholar 

  20. Galloway D. The primary structure. In: Weiss J. B., M. I. V. Jayson (eds) Collagen in Health and Disease. Churchill Livingstone, Edinburgh, 1982, pp. 528–557

    Google Scholar 

  21. Gustavson K. H. The function of hydroxyproline in collagens. Nature 175:70–74, 1955

    Article  PubMed  CAS  Google Scholar 

  22. Hedstrom L. Serine protease mechanism and specificity. Chem. Rev. 102:4501–4524, 2002

    Article  PubMed  CAS  Google Scholar 

  23. Hollander A. P., T. F. Heathfield, C. Webber, Y. Iwata, R. Bourne, C. Rorabeck, A. R. Poole Increased damage to type ii collagen in osteoarthritic articular cartilage detected by a new immunoassay. J. Clin. Invest. 93:1722–1732, 1994

    PubMed  CAS  Google Scholar 

  24. Horgan D. J., N. L. King, L. B. Kurth, R. Kuypers Collagen crosslinks and their relationship to the thermal properties of calf tendons. Arch. Biochem. Biophys. 281:21–26, 1990

    Article  PubMed  CAS  Google Scholar 

  25. Humphrey J. Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A. 459:3–46, 2003

    Article  Google Scholar 

  26. Kadler K. E., Y. Hojima, D. J. Prockop Assembly of type i collagen fibrils de novo. Between 37 and 41 degrees C the process is limited by micro-unfolding of monomers. J. Biol. Chem. 263:10517–10523, 1988

    PubMed  CAS  Google Scholar 

  27. Kastelic J., E. Baer Deformation in tendon collagen. Symp. Soc. Exp. Biol. 34:397–435, 1980

    PubMed  CAS  Google Scholar 

  28. Keil-Dlouha V. V., N. Zylber, J. Imhoff, N. Tong, B. Keil Proteolytic activity of pseudotrypsin. FEBS Lett. 16:291–295, 1971

    Article  PubMed  CAS  Google Scholar 

  29. Labouesse J., M. Gervais Preparation of chemically defined epsilon n-acetylated trypsin. Eur. J. Biochem. 2:215–223, 1967

    Article  PubMed  CAS  Google Scholar 

  30. Lee M., W. Hyman Modeling of failure mode in knee ligaments depending on the strain rate. BMC Musculoskelet. Disord. 3:3, 2002

    Article  PubMed  Google Scholar 

  31. Lee J. M., C. A. Pereira, D. Abdulla, W. A. Naimark, I. Crawford A multi-sample denaturation temperature tester for collagenous biomaterials. Med. Eng. Phys. 17:115–121, 1995

    Article  PubMed  CAS  Google Scholar 

  32. Miles C. A., N. C. Avery, V. V. Rodin, A. J. Bailey The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres. J. Mol. Biol. 346:551–556, 2005

    Article  PubMed  CAS  Google Scholar 

  33. Miles C. A., A. J. Bailey Thermally labile domains in the collagen molecule. Micron 32:325–332, 2001

    Article  PubMed  CAS  Google Scholar 

  34. Miles C. A., T. V. Burjanadze, A. J. Bailey The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. J. Mol. Biol. 245:437–446, 1995

    Article  PubMed  CAS  Google Scholar 

  35. Miles C. A., M. Ghelashvili Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys. J. 76:3243–3252, 1999

    PubMed  CAS  Google Scholar 

  36. Miller E. J., J. E. Finch Jr., E. Chung, W. T. Butler, P. B. Robertson Specific cleavage of the native type III collagen molecule with trypsin. Similarity of the cleavage products to collagenase-produced fragments and primary structure at the cleavage site. Arch. Biochem. Biophys. 173:631–637, 1976

    Article  PubMed  CAS  Google Scholar 

  37. Minns R. J., F. S. Steven Local denaturation of collagen fibres during the mechanical rupture of collagenous fibrous tissue. Ann. Rheum. Dis. 39:164–167, 1980

    Article  PubMed  CAS  Google Scholar 

  38. Mosler E., W. Folkhard, E. Knorzer, H. Nemetschek-Gansler, T. Nemetschek, M. H. Koch Stress-induced molecular rearrangement in tendon collagen. J. Mol. Biol. 182:589–596, 1985

    Article  PubMed  CAS  Google Scholar 

  39. Naimark W. A., S. D. Waldman, R. J. Anderson, B. Suzuki, C. A. Pereira, J. M. Lee Thermomechanical analysis of collagen crosslinking in the developing lamb pericardium. Biorheology 35:1–16, 1998

    Article  PubMed  CAS  Google Scholar 

  40. Nemethy G. Energetics and thermodynamics of collagen self-assembly. In: Nimni M. (ed) Collagen: Biochemistry. Boca Raton, Florida: CRC Press, 1989, pp. 79–94

    Google Scholar 

  41. Ramachandran G. N., M. Bansal, R. S. Bhatnagar A hypothesis on the role of hydroxyproline in stabilizing collagen structure. Biochim. Biophys. Acta 322:166–171, 1973

    PubMed  CAS  Google Scholar 

  42. Rice R. H., G. E. Means, W. D. Brown Stabilization of bovine trypsin by reductive methylation. Biochim. Biophys. Acta 492:316–321, 1977

    PubMed  CAS  Google Scholar 

  43. Robins S. P., M. Shimokomaki, A. J. Bailey The chemistry of the collagen cross-links. Age-related changes in the reducible components of intact bovine collagen fibres. Biochem J. 131:771–780, 1973

    PubMed  CAS  Google Scholar 

  44. Rosenbloom J., M. Harsch, S. Jimenez Hydroxyproline content determines the denaturation temperature of chick tendon collagen. Arch. Biochem. Biophys. 158:478–484, 1973

    Article  PubMed  CAS  Google Scholar 

  45. Ruberti J. W., N. J. Hallab Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem. Biophys. Res. Commun. 336:483–489, 2005

    Article  PubMed  CAS  Google Scholar 

  46. Rumian, A. P., A. L. Wallace, H. L. Birch. Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features—a comparative study in an ovine model. J. Orthop. Res. 25 (4):458–464, 2007

    Article  PubMed  CAS  Google Scholar 

  47. Ryhanen L., E. J. Zaragoza, J. Uitto Conformational stability of type i collagen triple helix: Evidence for temporary and local relaxation of the protein conformation using a proteolytic probe. Arch. Biochem. Biophys. 223:562–571, 1983

    Article  PubMed  CAS  Google Scholar 

  48. Saito M., K. Marumo, K. Fujii, N. Ishioka Single-column high-performance liquid chromatographic-fluorescence detection of immature, mature, and senescent cross-links of collagen. Anal. Biochem. 253:26–32, 1997

    Article  PubMed  CAS  Google Scholar 

  49. Sims T. J., N. C. Avery, A. J. Bailey Quantitative determination of collagen crosslinks. Methods Mol. Biol. 139:11–26, 2000

    PubMed  CAS  Google Scholar 

  50. Steven F. S., R. J. Minns Evidence for the local denaturation of collagen fibrils during the mechanical rupture of human tendons. Injury 6:317–319, 1975

    Article  PubMed  CAS  Google Scholar 

  51. Torp S., E. Baer, B. Friedman Effects of age and mechanical deformation on the ultrastructure of tendon. In: Atkins E. D. T., A. Keller (eds) Structure of Fibrous Biopolymers. London: Butterworth, 1975, pp. 223–250

    Google Scholar 

  52. Ward I. Mechanical Properties of Solid Polymers. Chichester: John Wiley and Sons, 1985

    Google Scholar 

  53. Weadock K. S., E. J. Miller, E. L. Keuffel, M. G. Dunn Effect of physical crosslinking methods on collagen–fiber durability in proteolytic solutions. J. Biomed. Mater. Res. 32:221–226, 1996

    Article  PubMed  CAS  Google Scholar 

  54. Wells S. M., S. L. Adamson, B. L. Langille, J. M. Lee Thermomechanical analysis of collagen crosslinking in the developing ovine thoracic aorta. Biorheology 35:399–414, 1998

    Article  PubMed  CAS  Google Scholar 

  55. Woessner J. F. Jr. Determination of hydroxyproline in connective tissues. In: Hall D. (ed) The Methodology of Connective Tissue Research. Oxford: Joynson-Bruvvers Ltd., 1976, pp. 227–233

    Google Scholar 

  56. Woo S. L., R. H. Peterson, K. J. Ohland, T. J. Sites, M. I. Danto The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: A biomechanical and histological study. J. Orthop. Res. 8:712–721, 1990

    Article  PubMed  CAS  Google Scholar 

  57. Yamauchi M., E. P. Katz, G. L. Mechanic Intermolecular cross-linking and stereospecific molecular packing in type I collagen fibrils of the periodontal ligament. Biochemistry 25:4907–4913, 1986

    Article  PubMed  CAS  Google Scholar 

  58. Yamauchi M., R. E. London, C. Guenat, F. Hashimoto, G. L. Mechanic Structure and formation of a stable histidine-based trifunctional cross-link in skin collagen. J. Biol. Chem. 262:11428–11434, 1987

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Maxine Langman, Dr. Paul F. Gratzer, Mr. Hong Tang, and Dr. Mary Anne White for valuable technical assistance, advice, and access to laboratory equipment. We would also like to thank our funding sources: The Natural Science and Engineering Research Council of Canada (J.M. Lee and T.L. Willett) and the Canadian Institutes for Heath Research Strategic Training Program in Cell Signaling in Mucosal Inflammation and Pain (STP-53877; T.L. Willett).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Willett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willett, T.L., Labow, R.S., Avery, N.C. et al. Increased Proteolysis of Collagen in an In Vitro Tensile Overload Tendon Model. Ann Biomed Eng 35, 1961–1972 (2007). https://doi.org/10.1007/s10439-007-9375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9375-x

Key terms

Navigation