Skip to main content
Log in

Study of CaO·2Al2O3 formation by polymeric precursor method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of unconventional synthesis methods in the formation of CaO·2Al2O3 (CA2) is justified because it reduces the formation temperature of the compound. CA2 is formed by classical method at temperatures above 1,400 °C. The polymeric precursor method allows a significant temperature decrease in CA2 synthesis reaching temperatures of 1,000 °C. This paper deals with CA2 synthesis by “citrate” method which is often presented as Pechini method, starting from a mixture of citric acid, ethylene glycol and calcium, and aluminum nitrates. A method based on the formation of a polymeric precursor was also used, starting from a mixture of acrylic acid and nitrates of calcium and aluminum. The results showed a net difference in favor of samples obtained from acrylic acid, which by annealing at 800 °C for 1 h, contain pure CA2. The samples obtained from citric acid, after annealing at 800 °C are amorphous. After annealing at 900 °C in all samples CA2 is single phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pechini M. Method for preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent No. 3,330,697, 11 July 1967.

  2. Zaki T, Kabel Khalid I, Hassan H. Using modified Pechini method to synthesize α-Al2O3 nanoparticles of high surface area. Ceram Int. 2012;38(6):4861–6.

    Article  CAS  Google Scholar 

  3. Wang SF, Lu HC, Hsu YF, Huang CC, Yeh CT. SrCo1−xSbxO3−δ cathode materials prepared by Pechini method for solid oxide fuel cell applications. Ceram Int. 2012;38(7):5941–7.

    Article  CAS  Google Scholar 

  4. Lin YJ, Chang YH, Yang WD, Tsai BS. Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method. J Non Cryst Solids. 2006;352(8):789–94.

    Article  CAS  Google Scholar 

  5. Devaraj R, Karthikeyan K, Jeyasubramanian K. Synthesis and properties of ZnO nanorods by modified Pechini process. Appl Nanosci. 2012. doi:10.1007/s13204-012-0072-1.

  6. Matraszek A, Radominska E, Szczygiel I. Modified Pechini synthesis of La, Ce, and Pr orthophosphates and characterization of obtained powders. J Therm Anal Calorim. 2011;103:813–9.

    Article  CAS  Google Scholar 

  7. Bernardi MIB, Antonelli E, Louren AB, Feitosa CAC, Maia LJQ, Hernandes AC. BaTi1−xZrxO3 nanopowders prepared by the modified Pechini method. J Therm Anal Calorim. 2007;87(3):725–30.

    Article  CAS  Google Scholar 

  8. Ianoş R, Lazău I, Păcurariu C, Barvinschi P. Peculiarities of CaO·6Al2O3 formation by using low-temperature combustion synthesis. Eur J Inorg Chem. 2008;6:925–30.

    Google Scholar 

  9. Ianoş R. An efficient solution for single-step synthesis of 4CaO·Al2O3·Fe2O3 powders. J Mater Res. 2009;24:245–52.

    Article  Google Scholar 

  10. Ianoş R, Lazău I, Păcurariu C, Barvinschi P. Fuel mixture approach for solution combustion synthesis of Ca3Al2O6 powders. Cem Concr Res. 2009;39:566–72.

    Article  Google Scholar 

  11. Taş AC. Chemical preparation of the binary compounds in the calcia–alumina system by self-propagating combustion synthesis. J Am Ceram Soc. 1998;81:2853–63.

    Google Scholar 

  12. Stephan D, Wilhelm P. Synthesis of pure cementitious phases by sol–gel process as precursor. Z Anorg Allg Chem. 2004;630:1477–83.

    Article  CAS  Google Scholar 

  13. López-Delgado A, López FA, Gonzalo-Delgado L, López-Andrés S, Alguacil FJ. Study by DTA/TG of the formation of calcium aluminate obtained from an aluminium hazardous waste. J Therm Anal Calorim. 2010;99(3):999–1004.

    Article  Google Scholar 

  14. Douy A, Gervais M. Crystallization of amorphous precursors in the calcia–alumina system: a differential scanning calorimetry study. J Am Ceram Soc. 2000;83:70–6.

    Article  CAS  Google Scholar 

  15. Lee SJ, Benson EA, Kriven WM. Preparation of Portland cement components by poly(vinyl alcohol) solution polymerization. J Am Ceram Soc. 1999;82:2049–55.

    Article  CAS  Google Scholar 

  16. Altay A, Carter CB, Arslan I, Gülgün MA. Crystallization of CaAl4O7 and CaAl12O19. Philos Mag. 2009;89(7):605–21.

    Article  CAS  Google Scholar 

  17. Lazău I, Păcurariu C, Băbuţă R. The use of thermal analysis in the study of Ca3Al2O6 formation by the polymeric precursor method. J Therm Anal Calorim. 2011;105(2):427–34.

    Article  Google Scholar 

  18. Lazău I, Păcurariu C, Băbuţă R. The thermal behavior of some polymeric precursors used in CaAl12O19 synthesis. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2414-3.

  19. Gaki A, Chrysafi R, Perraki Th, Kakali G. Chemical synthesis of hydraulic aluminate compounds using the Pechini technique. J Eur Ceram Soc. 2007;27:1781–4.

    Article  CAS  Google Scholar 

  20. Yuan X, Xu Y, He Y. Synthesis of Ca3Al2O6 via citric acid precursor. Mater Sci Eng A. 2007;447:142–5.

    Article  Google Scholar 

  21. Yuan X, Xu Y, He Y. Synthesis of CaAl4O7 via citric acid precursor. J Alloy Compd. 2007;441:251–4.

    Article  CAS  Google Scholar 

  22. Hallstedt B. Assessment of the CaO–Al2O3 system. J Am Ceram Soc. 1990;73(1):15–23.

    Article  CAS  Google Scholar 

  23. Yerpude AN, Dhoble SJ. Combustion synthesis of blue-emitting submicron CaAl4O7:Eu2+, Dy3+ persistence phosphor. J Biol Chem Lumin. 2011. doi:10.1002/bio.1373.

  24. Jia D, Wu B, Zhu J, Liu Y. Stable high quality luminescent material CaAl4O7: Tb3+, Ce3+. Article translated by Guang Pu, Xue Yu Guang, Pu Fen Xi. Pub Med. 2001;21(1):7–10.

    Google Scholar 

  25. Puchalska M, Gerasymchuk Y, Zych E. Optical properties of Eu3+-doped CaAl4O7 synthesized by the Pechini method. Opt Mater. 2012;32(9):1117–22.

    Article  Google Scholar 

  26. Singh VK, Ali MM, Mandal UK. Formation kinetics of calcium aluminates. J Am Ceram Soc. 1990;73:872–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the strategic Grant POSDRU/88/1.5/S/50783, Project ID50783 (2009), co-financed by the European Social Fund—Investing in People, within the Sectoral Operational Programme Human Resources Development 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Băbuţă.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Băbuţă, R., Lazău, I. & Păcurariu, C. Study of CaO·2Al2O3 formation by polymeric precursor method. J Therm Anal Calorim 112, 339–344 (2013). https://doi.org/10.1007/s10973-012-2656-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2656-0

Keywords

Navigation