Skip to main content
Log in

Bicalutamide polymorphs I and II

A monotropic phase relationship under ordinary conditions turning enantiotropic at high pressure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

For a complete picture of the phase behavior of a compound exhibiting dimorphism, not only the temperature but also the pressure, the second variable of the Gibbs energy, should be taken into account. Because volume reflects the dependence of the Gibbs energy on pressure, investigating the specific volumes of a compound provides information on its phase behavior under pressure. This can be quantified using the Clapeyron equation, which leads to a so-called topological pressure–temperature phase diagram. Bicalutamide is used as a sample case and with literature data its topological phase diagram has been constructed. Even though the phase relationship between bicalutamide’s two known solid phases is monotropic at ordinary pressure, it becomes enantiotropic at higher pressure. The steep slope of the solid–solid equilibrium in the PT diagram, 22.5 MPa K−1, indicates that pressure has virtually no influence on it and that it is mainly entropy driven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lehmann O. Molekularphysik. Leipzig: Verlag von Wilhelm Engelmann; 1888.

    Google Scholar 

  2. Nagasako N. On enantiotropy and monotropy I. Bull Chem Soc Jpn. 1928;3:90–5.

    Article  CAS  Google Scholar 

  3. Bakhuis Roozeboom HW. Die heterogenen gleichgewichte vom standpunkte der phasenlehre. Erstes heft: Die phasenlehre - systeme aus einer komponente. Braunschweig: Friedrich Vieweg und Sohn; 1901.

  4. Riecke E. Spezielle fälle von gleichgewichterscheinungen eines aus mehreren phasen zusammengesetzten systemes. Z Phys Chem (Munich). 1890;6:411.

    Google Scholar 

  5. Ceolin R, Rietveld IB. Phenomenology of polymorphism and topological pressure–temperature diagrams. J Therm Anal Calorim. 2010;102:357–60.

    Article  CAS  Google Scholar 

  6. Espeau P, Céolin R, Tamarit JL, Perrin MA, Gauchi JP, Leveiller F. Polymorphism of paracetamol: relative stabilities of the monoclinic and orthorhombic phases inferred from topological pressure–temperature and temperature–volume phase diagrams. J Pharm Sci. 2005;94:524–39.

    Article  CAS  Google Scholar 

  7. Ledru J, Imrie CT, Pulham CR, Ceolin R, Hutchinson JM. High pressure differential scanning calorimetry investigations on the pressure dependence of the melting of paracetamol polymorphs I and II. J Pharm Sci. 2007;96:2784–94.

    Article  CAS  Google Scholar 

  8. Barrio M, Espeau P, Tamarit JL, Perrin MA, Veglio N, Céolin R. Polymorphism of progesterone: relative stabilities of the orthorhombic phases I and II inferred from topological and experimental pressure–temperature phase diagrams. J Pharm Sci. 2009;98:1657–70.

    Article  CAS  Google Scholar 

  9. Céolin R, Tamarit JL, Barrio M, Lopez DO, Nicolaï B, Veglio N, Perrin MA, Espeau P. Overall monotropic behavior of a metastable phase of biclotymol, 2,2′-methylenebis(4-chloro-3-methyl-isopropylphenol), inferred from experimental and topological construction of the related PT state diagram. J Pharm Sci. 2008;97:3927–41.

    Article  Google Scholar 

  10. Rietveld I, Barrio M, Espeau P, Tamarit J, Ceolin R. Topological and experimental approach to the pressure-temperature–composition phase diagram of the binary enantiomer system d- and l-camphor. J Phys Chem B. 2011;115:1672–8.

    Article  CAS  Google Scholar 

  11. Ceolin R, Toscani S, Agafonov V, Dugue J. Phenomenology of polymorphism 1 pressure temperature representation of trimorphism—general rules; application to the case of dimethyl 3,6-dichloro-2,5-dihydroxyterephthalate. J Solid State Chem. 1992;98:366–78.

    Article  CAS  Google Scholar 

  12. Ceolin R, Toscani S, Dugue J. Phenomenology of polymorphism. 2. Criteria for overall (P, T) monotropy—applications to monochloroacetic acid and to hydrazine monohydrate. J Solid State Chem. 1993;102:465–79.

    Article  CAS  Google Scholar 

  13. Ceolin R, Agafonov V, Louer D, Dzyabchenko VA, Toscani S, Cense JM. Phenomenology of polymorphism 3 P, T diagram and stability of piracetam polymorphs. J Solid State Chem. 1996;122:186–94.

    Article  CAS  Google Scholar 

  14. Toscani S, Dzyabchenko A, Agafonov V, Dugue J, Ceolin R. Polymorphism of sulfanilamide.2. Stability hierarchy of alpha-, beta- and gamma-forms from energy calculations by the atom-atom potential method and from the construction of the P, T phase diagram. Pharm Res. 1996;13:151–4.

    Article  CAS  Google Scholar 

  15. Toscani S, de Oliveira P, Ceolin R. Phenomenology of polymorphism IV. The trimorphism of ferrocene and the overall metastability of its triclinic phase. J Solid State Chem. 2002;164:131–7.

    Article  CAS  Google Scholar 

  16. Mainwaring WIP, Furr BJA, Freeman SN. Studies on a novel antiandrogen—Ici 176334. Eur J Cancer Clin Oncol. 1987;23:1244.

    Article  Google Scholar 

  17. Furr BJA, Valcaccia B, Curry B, Woodburn JR, Chesterson G, Tucker H. Ici-176,334—a novel nonsteroidal, peripherally selective antiandrogen. J Endocrinol. 1987;113:R7–9.

    Article  CAS  Google Scholar 

  18. Vega DR, Polla G, Martinez A, Mendioroz E, Reinoso M. Conformational polymorphism in bicalutamide. Int J Pharm. 2007;328:112–8.

    Article  CAS  Google Scholar 

  19. Hu XR, Gu JM. N-[4-cyano-3-(trifluoromethyl)phenyl]-3-(4-fluorophenylsulfonyl)-2-hydroxy-2-methylpropionamide. Acta Crystallogr Sect E Struct Rep Online. 2005;61:o3897–8.

    Article  Google Scholar 

  20. Inui M, Ueda M. Structure determination of bicalutamide polymorphic forms by powder X-ray diffraction: case studies using density functional theory calculations and Rietveld refinement. Sumitomo Kagaku. 2008;2008:39–47.

    Google Scholar 

  21. Persson R, Nordholm S, Perlovich G, Lindfors L. Monte Carlo studies of drug nucleation 1: formation of crystalline clusters of bicalutamide in water. J Phys Chem B. 2011;115:3062–72.

    Article  CAS  Google Scholar 

  22. Német Z, Sztatisz J, Demeter A. Polymorph transitions of bicalutamide: a remarkable example of mechanical activation. J Pharm Sci. 2008;97:3222–32.

    Article  Google Scholar 

  23. Andrews GP, Abudiak OA, Jones DS. Physicochemical characterization of hot melt extruded bicalutamide-polyvinylpyrrolidone solid dispersions. J Pharm Sci. 2010;99:1322–35.

    Article  CAS  Google Scholar 

  24. Yu L. Inferring thermodynamic stability relationship of polymorphs from melting data. J Pharm Sci. 1995;84:966–74.

    Article  CAS  Google Scholar 

  25. Barrio M, Maccaroni E, Rietveld IB, Malpezzi L, Masciocchi N, Ceolin R, Tamarit J-L. Pressure–temperature state diagram for the phase relationships between benfluorex hydrochloride forms I and II: a case of enantiotropic behavior. J Pharm Sci. 2012;101:1073–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo B. Rietveld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gana, I., Céolin, R. & Rietveld, I.B. Bicalutamide polymorphs I and II. J Therm Anal Calorim 112, 223–228 (2013). https://doi.org/10.1007/s10973-012-2617-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2617-7

Keywords

Navigation