Skip to main content
Log in

Thermal crystallization kinetic and electrical properties of partly crystallized amorphous indium oxide thin films sputtering deposited in the presence or the absence of water vapor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Partly crystallized amorphous indium oxide thin films were deposited under water vapor atmosphere by magnetron sputtering. XRD analysis revealed that appropriate water vapor could suppress the film’s crystallinity. In situ thermal crystallization process was monitored by high-temperature XRD. The crystallization data were analyzed using the Kolmogorov–Johnson–Mehl–Avrami equation. The kinetic exponent n is determined to be approx. 1/2 and 3/2 for film deposited in the absence and the presence of water vapor, respectively. The activation energy of crystallization for film deposited under 1 × 10−5 Torr water vapor pressure was determined to be 30.7 kJ mol−1, which is higher than 18.9 kJ mol−1 for film deposited in the absence of water vapor. The increased activation energy caused by the chemically bonded hydrogen and embedded O–H bonds from the water vapor resulted in the suppression of crystallization. Introduction of appropriate water vapor during the deposition decreased the resistivity because of the increase of Hall mobility. The resistivity of the films after annealing increased due to the evaporation of water vapor resulted in crystal defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hosono H. Recent progress in transparent oxide semiconductors: materials and device application. Thin Solid Films. 2007;515:6000–14.

    Article  CAS  Google Scholar 

  2. Uchida T, Kasahara Y, Otomo T, Seki S, Wang MH, Sawada Y. Transparent conductive electrode deposited by Cs-incorporated RF magnetron sputtering and evaluation of the damage in OLED organic layer. Thin Solid Films. 2008;516:5907–10.

    Article  CAS  Google Scholar 

  3. Seki Y, Sawada Y, Wang MH, Lei H, Hoshi Y, Uchida T. Electrical properties of tin-doped indium oxide thin films prepared by a dip coating. Ceram Int. 2012;38S:S613–6.

    Article  Google Scholar 

  4. Kondo T, Funakubo H, Akiyama K, Enta H, Seki Y, Wang MH, Uchida T, Sawada Y. Deposition of undoped indium oxide thin films on stripe-patterned substrates by spray CVD. J Cryst Growth. 2009;311:642–6.

    Article  CAS  Google Scholar 

  5. Ow-Yang CW, Spinner D, Shigesato Y, Paine DC. A time-resolved reflectivity study of the amorphous-to-crystalline transformation kinetics in dc-magnetron sputtered indium tin oxide. J Appl Phys. 1998;83:145–54.

    Article  CAS  Google Scholar 

  6. Ishibashi S, Higuchi Y, Ota Y, Nakamura K. Low resistivity indium–tin oxide transparent conductive films. Effect of introduction H2O gas or H2 gas during direct current magnetron sputtering. J Vac Sci Technol A. 1990;8:1399–402.

    Article  CAS  Google Scholar 

  7. Nishimura E, Ando M, Onisawa K, Takabatake M, Minemuba T. Structural change during annealing of amorphous indium-tin oxide films deposited by sputtering with H2O addition. Jpn J Appl Phys. 1996;35:2788–92.

    Article  CAS  Google Scholar 

  8. Nishimura E, Ohkawa H, Song PK, Shigesato Y. Microstructures of ITO films deposited by d.c. magnetron sputtering with H2O introduction. Thin Solid Films. 2003;445:235–40.

    Article  CAS  Google Scholar 

  9. Ando M, Nishimura E, Onisawa K, Minemura T. Effect of microstructures on nanocrystallite nucleation and growth in hydrogenated amorphous indium–tin–oxide films. J Appl Phys. 2003;93:1032–8.

    Article  CAS  Google Scholar 

  10. Wang MH, Onai Y, Hoshi Y, Lei H, Kondo T, Uchida T, Singkarat S, Kamwanna T, Dangtip S, Aukkaravittayapun S, Nishide T, Tokiwa S, Sawada Y. Thermal change of amorphous indium tin oxide films sputter-deposited in water vapor atmosphere. Thin Solid Films. 2008;516:5809–13.

    Article  CAS  Google Scholar 

  11. Wang MH, Sawada Y, Lei H, Seki Y, Hoshi Y, Uchida T, Konya T, Kishi A. Thermal crystallization kinetics and crystallite size distribution of amorphous ITO film deposited in the presence or absence of water vapor. Thin Solid Films. 2010;518:2992–5.

    Article  CAS  Google Scholar 

  12. Wang MH, Tokiwa S, Nishide T, Kasahara Y, Seki S, Uchida T, Ohtsuka M, Kondo T, Sawada Y. Thermally induced changes in amorphous indium-tin-oxide thin films: gas evolution and crystallization. J Therm Anal Cal. 2008;91:249–54.

    Article  CAS  Google Scholar 

  13. Kim D, Han Y, Cho JS, Koh SK. Low temperature deposition of ITO thin films by ion beam sputtering. Thin Solid Films. 2000;377–378:81–6.

    Article  Google Scholar 

  14. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetic committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  15. Christian JW. The theory of transformations in metals and alloys. Formal theory of transformation kinetics. Pergamon: Oxford; 2002. p. 529–52.

    Book  Google Scholar 

  16. Kato K, Omoto H, Tomioka T, Takamatsu A. Changes in electrical and structural properties of indium oxide thin films through post-deposition annealing. Thin Solid Films. 2011;520:110–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) for the financial support they have given to High-Tech Research Center Project, which is entitled: Development of Flexible Transparent Light Emitting Display Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meihan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Lei, H., Seki, Y. et al. Thermal crystallization kinetic and electrical properties of partly crystallized amorphous indium oxide thin films sputtering deposited in the presence or the absence of water vapor. J Therm Anal Calorim 111, 1457–1461 (2013). https://doi.org/10.1007/s10973-012-2526-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2526-9

Keywords

Navigation