Skip to main content
Log in

Polymerization behavior and thermal properties of benzoxazine based on 4,4′-diaminodiphenyl ether

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermally activated ring-opening polymerization behavior of benzoxazine based on 4,4′-diaminodiphenyl ether was investigated by Fourier transform infrared and differential scanning calorimetry, and the thermal properties of the corresponding polybenzoxazine were studied by dynamic mechanical analysis, thermogravimetry-mass spectrometry, and differential thermal analysis. In the ring-opening polymerization reaction, the C–O–C absorption peak of the oxazine ring at 1,054 cm–1 disappeared first, and the C–N–C absorption intensity of the oxazine ring decreased gradually with time rising. The activation energies of the non-isothermal polymerization are 83.4 and 87.4 kJ mol–1 evaluated with Kissinger and Flynn–Wall–Ozawa methods, respectively. Dynamic mechanical analysis shows the glass transition temperature of the resultant polybenzoxazine is 188 °C. In the thermal degradation, the 10 % mass loss temperature of the polybenzoxazine is 353 °C and the char yield is about 48 % at 800 °C in nitrogen, while 415 °C and close to 0 % at 650 °C in air.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Holly FW, Cope AC. Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine. J Am Chem Soc. 1944;66:1875–9.

    Article  CAS  Google Scholar 

  2. Burke WJ, Weatherbee C. 3,4-Dihydro-1,3,2H-benzoxazines. Reaction of polyhydroxybenzenes with N-methylolamines. J Am Chem Soc. 1950;72:4691–4.

    Article  CAS  Google Scholar 

  3. Burke WJ, Stephens CW. Monomeric products from the condensation of phenol with formaldehyde and primary amines. J Am Chem Soc. 1952;74:1518–20.

    Article  CAS  Google Scholar 

  4. Burke WJ, Murdoch KC, Ec G. Condensation of hydroxyaromatic compounds with formaldehyde and primary aromatic amines. J Am Chem Soc. 1954;76:1677–9.

    Article  CAS  Google Scholar 

  5. Burke WJ. 3,4-Dihydro-l,3,2H-benzoxazines. Reaction of p-substituted phenols with N,N-dimethylolamines. J Am Chem Soc. 1949;71:609–12.

    Article  CAS  Google Scholar 

  6. Burke WJ, Bishop JL, Glennie ELM, Bauer WN. A new aminoalkylation reaction. Condensation of phenols with dihydro-1,3-aroxazines. J Org Chem. 1965;30:3423–7.

    Article  CAS  Google Scholar 

  7. Burke WJ, Glennis ELM, Weatherbee C. Condensation of halophenols with formaldehyde and primary amines. J Org Chem. 1964;29:909–12.

    Article  CAS  Google Scholar 

  8. Ning X, Ishida H. Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J Polym Sci Part A. 1994;32:1121–9.

    Article  CAS  Google Scholar 

  9. Ning X, Ishida H. Phenolic materials via ring-opening polymerization of benzoxazines: effect of molecular structure on mechanical and dynamic mechanical properties. J Polym Sci Part B. 1994;32:921–7.

    Article  CAS  Google Scholar 

  10. Liu YF, Yue ZQ, Gao JG. Synthesis, characterization, and thermally activated polymerization behavior of bisphenol-S/aniline based benzoxazine. Polymer. 2010;51:3722–9.

    Article  CAS  Google Scholar 

  11. Liu J, Agag T, Ishida H. Main-chain benzoxazine oligomers: a new approach for resin transfer moldable neat benzoxazines for high performance applications. Polymer. 2010;51:5688–94.

    Article  CAS  Google Scholar 

  12. Jia K, Xu MZ, Zhao R, Liu XB. Chemically bonded iron carbonyl for magnetic composites based on phthalonitrile polymers. Polym Int. 2011;60:414–21.

    Article  CAS  Google Scholar 

  13. Chen KC, Li HT, Chen WB, Liao CH, Sun KW, Chang FC. Synthesis and characterization of a novel siloxane-imide-containing polybenzoxazine. Polym Int. 2011;60:436–42.

    Article  CAS  Google Scholar 

  14. Li SF, Wang LL. Curing behavior of 4,4′-diamonodiphenyl methane-based benzoxazine oligomers/bisoxazoline copolymers and the properties of their cured resins. J Appl Polym Sci. 2006;99:1359–66.

    Article  CAS  Google Scholar 

  15. Lin CH, Chang SL, Hsieh CW, Lee HH. Aromatic diamine-based benzoxazines and their high performance thermosets. Polymer. 2008;49:1220–9.

    Article  CAS  Google Scholar 

  16. Spontón M, Larrechi MS, Ronda JC, Galià M, Cádiz V. Synthesis and study of the thermal crosslinking of bis(m-aminophenyl) methylphosphine oxide based benzoxazine. J Polym Sci Part A. 2008;46:7162–72.

    Article  Google Scholar 

  17. Andronescu C, Gârea SA, Deleanu C, Iovu H. Characterization and curing kinetics of new benzoxazine monomer based on aromatic diamines. Thermochim Acta. 2012;530:42–51.

    Article  CAS  Google Scholar 

  18. Chozhan CK, Alagar M, Gnanasundaram P. Synthesis and characterization of 1,1-bis(3-methyl-4-hydroxy phenyl)-cyclohexane polybenzoxazine–organoclay hybrid nanocomposites. Acta Mater. 2009;57:782–94.

    Article  CAS  Google Scholar 

  19. Lin CH, Lin HT, Sie JW, Hwang KY, Tu AP. Facile, one-pot synthesis of aromatic diamine-based phosphinated benzoxazines and their flame-retardant thermosets. J Polym Sci Part A. 2010;48:4555–66.

    Article  CAS  Google Scholar 

  20. Lin CH, Chang SL, Shen TY, Shih YS, Lin HT, Wang CF. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polym Chem. 2012;3:935–45.

    Article  CAS  Google Scholar 

  21. Chang SL, Lin CH. Facile, one-pot synthesis of aromatic diamine-based benzoxazines and their advantages over diamines as epoxy hardeners. J Polym Sci Part A. 2010;48:2430–7.

    Article  CAS  Google Scholar 

  22. Qia HM, Ren H, Pan GY, Zhuang YQ, Huang FR, Du L. Synthesis and characteristic of polybenzoxazine with phenylnitrile functional group. Polym Adv Technol. 2009;20:268–72.

    Article  Google Scholar 

  23. Agag T, Jin L, Ishida H. A new synthetic approach for difficult benzoxazines: preparation and polymerization of 4,4′-diaminodiphenyl sulfone-based benzoxazine monomer. Polymer. 2009;50:5940–4.

    Article  CAS  Google Scholar 

  24. Ishida H, Rodriguez Y. Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry. Polymer. 1995;36:3151–8.

    Article  CAS  Google Scholar 

  25. Russell VM, Koenig JL, Low HY, Ishida H. Study of the characterization and curing of benzoxazines using 13C solid-state nuclear magnetic resonance. J Appl Polym Sci. 1998;70:1413–25.

    Article  CAS  Google Scholar 

  26. Wang YX, Ishida H. Cationic ring-opening polymerization of benzoxazines. Polymer. 1999;40:4563–70.

    Article  CAS  Google Scholar 

  27. Wang YX, Ishida H. Synthesis and properties of new thermoplastic polymers from substituted 3,4-dihydro-2H-1,3-benzoxazines. Macromolecules. 2000;33:2839–47.

    Article  CAS  Google Scholar 

  28. Dunkers J, Ishida H. Vibrational assignments of 3-alkyl-3,4-dihydro-6-methyl-2H-1,3-benzoxazines in the fingerprint region. Spectrochim Acta. 1995;51A:1061–74.

    CAS  Google Scholar 

  29. Kim HJ, Brunovska Z, Ishida H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers. Polymer. 1999;40:6565–73.

    Article  CAS  Google Scholar 

  30. Su YC, Yei DR, Chang FC. The kinetics of B-a and P-a type copolybenzoxazine via the ring opening process. J Appl Polym Sci. 2005;95:730–7.

    Article  CAS  Google Scholar 

  31. Agag T, Takeichi T. Preparation, characterization, and polymerization of maleimidobenzoxazine monomers as a novel class of thermosetting resins. J Polym Sci Part A. 2006;44:1424–35.

    Article  CAS  Google Scholar 

  32. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  33. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B. 1966;4:323–8.

    Article  CAS  Google Scholar 

  34. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  35. Liu YF, Zhang J, Liu Z, Li ZH, Yue ZQ. Thermally activated polymerization behavior of bisphenol-S/methylamine-based benzoxazine. J Appl Polym Sci. 2012;124:813–22.

    Article  CAS  Google Scholar 

  36. Ishida H, Rodriguez Y. Catalyzing the curing reaction of a new benzoxazine based phenolic resin. J Appl Polym Sci. 1995;58:1751–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural Science Foundation of Hebei University (2011YY06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Li, Z., Zhang, J. et al. Polymerization behavior and thermal properties of benzoxazine based on 4,4′-diaminodiphenyl ether. J Therm Anal Calorim 111, 1523–1530 (2013). https://doi.org/10.1007/s10973-012-2480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2480-6

Keywords

Navigation