Skip to main content
Log in

Improving the Thermal Stability of Polybenzoxazines Through Incorporation of Eugenol-Based Benzoxazine

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

To introduce the para-position of phenol or aniline moiety into the cross-linked network of polybenzoxazine and improve its thermal stability, benzoxazine based on eugenol and 4,4’-diaminodiphenylmethane (e-ddm) was copolymerized with bisphenol A-aniline-based benzoxazine (b-a) or phenol-aniline-based benzoxazine (p-a). The differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR) results show that the carbenium ion intermediate from e-ddm could react with the para-position of phenol or aniline in b-a and p-a during the ring-opening polymerization process, resulting in that the aniline and phenol moieties were introduced into cross-linked structures of polybenzoxazines. The thermogravimetric analysis (TGA) and TGA interfaced with FTIR results indicate that the thermal stability of polybenzoxazines increased with the incorporation of e-ddm, due to that the volatilization of phenol, aniline and their derivatives was restrained during the thermal degradation processes. Thereby, introducing e-ddm into benzoxazine is a better method of increasing the thermal stability of polybenzoxazine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Zhang, Q. Ran, Q. Fu, and Y. Gu, Macromolecules, 51, 6561 (2018).

    Article  CAS  Google Scholar 

  2. S. Zachariah, T. Chuo, and Y. Liu, Polymer, 155, 168 (2018).

    Article  CAS  Google Scholar 

  3. X. Li, S. Zhao, W. Hu, X. Zhang, L. Pei, and Z. Wang, Appl. Surf. Sci., 481, 374 (2019).

    Article  CAS  Google Scholar 

  4. S. H. Lee, K. S. Kim, J. H. Shim, and C. Ahn, Macromol. Res., 26, 388 (2018).

    Article  CAS  Google Scholar 

  5. S. Ohashi, J. Kilbane, T. Heyl, and H. Ishida, Macromolecules, 48, 8412 (2015).

    Article  CAS  Google Scholar 

  6. M. Goto, Y. Miyagi, M. Minami, and F. Sanda, J. Polym. Sci., Part A: Polym. Chem., 56, 1884 (2018).

    Article  CAS  Google Scholar 

  7. T. Agag and T. Takeichi, Macromolecules, 36, 6010 (2003).

    Article  CAS  Google Scholar 

  8. H. J. Kim, Z. Brunovska, and H. Ishida, Polymer, 40, 1815 (1999).

    Article  CAS  Google Scholar 

  9. H. Qi, H. Ren, G. Pan, Y. Zhuang, F. Huang, and L. Du, Polym. Advan. Technol., 20, 268 (2009).

    Article  CAS  Google Scholar 

  10. H. Ma, Z. Xu, J. Qiu, and C. Liu, Polymer, 132, 41 (2017).

    Article  CAS  Google Scholar 

  11. X. Liu, R. Zhang, T. Li, P. Zhu, and Q. Zhuang, ACS Sustain. Chem. Eng., 5, 10682 (2017).

    Article  CAS  Google Scholar 

  12. A. Van, K. Chiou, and H. Ishida, Polymr, 55, 1443 (2014).

    Article  CAS  Google Scholar 

  13. C. Zúñiga, G. Lligadas, J. C. Ronda, M. Galià, and V. Cádiz, Polymer, 53, 3089 (2012).

    Article  Google Scholar 

  14. X. Shen, J. Dai, Y. Liu, X. Liu, and J. Zhu, Polymer, 122, 258 (2017).

    Article  CAS  Google Scholar 

  15. Y. Liu and C. Chou, J. Polym. Sci. Part A: Polym. Chem., 43, 5267 (2005).

    Article  CAS  Google Scholar 

  16. K. Krishnamoorthy, D. Subramani, N. Eeda, and A. Muthukaruppan, Polym. Adv. Tech., 30, 1856 (2019).

    Article  CAS  Google Scholar 

  17. S. Krishnan, H. Arumugam, M. Chavali, and A. Muthukaruppan, J. Appl. Polym. Sci., 136, 47050 (2019).

    Article  Google Scholar 

  18. P. Thirukumaran, A. S. Parveen, and M. Sarojadevi, ACS Sustain. Chem. Eng., 2, 2790 (2014).

    Article  CAS  Google Scholar 

  19. P. Thirukumaran, A. Shakila, and S. Muthusamy, RSC Adv., 4, 7959 (2014).

    Article  CAS  Google Scholar 

  20. L. Dumas, L. Bonnaud, M. Olivier, M. Poorteman, and P. Dubois, J. Mater. Chem, 3, 6012 (2015).

    Article  CAS  Google Scholar 

  21. L. Dumas, L. Bonnaud, M. Olivier, M. Poorteman, and P. Dubois, Eur. Polym. J., 67, 494 (2015).

    Article  CAS  Google Scholar 

  22. P. Thirukumaran, A. S. Parveen, K. Kumudha, and M. Sarojadevi, Polym. Compos., 37, 1821 (2016).

    Article  CAS  Google Scholar 

  23. W. J. Burke, J. L. Bishop, E. L. M. Glennie, and W. N. Bauer, J. Organ. Chem, 30, 3423 (1965).

    Article  CAS  Google Scholar 

  24. Y. Wang and H. Ishida, Macromolecules, 33, 2839 (2000).

    Article  CAS  Google Scholar 

  25. H. Ishida and D. P. Sanders, Macromolecules, 33, 8149 (2000).

    Article  CAS  Google Scholar 

  26. C. Liu, D. Shen, R. M. Sebastián, J. Marquet, and R. Schonfeld, Macromolecules, 44, 4616 (2011).

    Article  CAS  Google Scholar 

  27. D. Pei, Y. Gu, and X. Cai, Acta Polym. Sin., 1, 595 (1998).

    Google Scholar 

  28. Y. Zhu, M. Li, and Y. Gu, J. Macromol. Sci. Part B Phys., 52, 738 (2013).

    Article  CAS  Google Scholar 

  29. Y. Zhu and Y. Gu, Polym. Mater. Sci. Eng., 30, 43 (2014).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfei Zhu.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This work was supported by Natural Science Foundation of Guangxi Autonomous Region (2018GXNSFAA138057).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Su, J., Lin, R. et al. Improving the Thermal Stability of Polybenzoxazines Through Incorporation of Eugenol-Based Benzoxazine. Macromol. Res. 28, 472–479 (2020). https://doi.org/10.1007/s13233-020-8055-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8055-7

Keywords

Navigation