Skip to main content
Log in

Thermogravimetric analysis of the water vapor addition during the CaO carbonation process at moderate temperatures (40–70 °C)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Experiments were performed on calcium oxide, using water vapor with N2 or CO2 as carrier gases, between 40 and 70 °C. A initial experiment was performed with water vapor in the presence of N2 to elucidate the possible hydroxylation process produced by water vapor exclusively. On the other hand, when CO2 was used as carrier gas the CaO reactivity changed, producing different hydrated, hydroxylated, and carbonated phases. On the basis of these results and the fact that under dry conditions CO2 is not absorbed on CaO at T < 70 °C, a possible CaO–H2O–CO2 reaction mechanism was proposed, where CaO superficial hydroxylation process seems to play a very important role during the CO2 capture. Finally, a kinetic analysis was produced to compare the temperature and humidity relative influence on the whole process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Song CS. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today. 2006;115:2–32.

    Article  CAS  Google Scholar 

  2. Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL. Global climate change and terrestrial net primary production. Nature. 1993;363:234–40.

    Article  CAS  Google Scholar 

  3. Han KK, Zhou Y, Chun Y, Zhu JH. Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature. J Hazard Mater. 2012;203–204:341–7.

    Article  Google Scholar 

  4. Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2009;2:796–854.

    Article  CAS  Google Scholar 

  5. Zhao HY, Cao Y, Lineberry Q, Pan WP. Evaluation of CO2 adsorption capacity of solid sorbents. J Therm Anal Calorim. 2011;106:199–205.

    Article  CAS  Google Scholar 

  6. Lin PC, Huang CW, Hsiao CT, Teng H. Magnesium hydroxide extracted from a magnesium-rich mineral for CO2 sequestration in a gas–solid system. Environ Sci Technol. 2008;42:2748–52.

    Article  CAS  Google Scholar 

  7. Lee SC, Chae HJ, Lee SJ, Choi BY, Yi CK, Lee JB, Ryu CK, Kim JC. Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environ Sci Technol. 2008;42:2736–41.

    Article  CAS  Google Scholar 

  8. Torres-Rodríguez DA, Pfeiffer H. Thermokinetic analysis of the MgO surface carbonation process in the presence of water vapor. Thermochim Acta. 2011;516:74–8.

    Article  Google Scholar 

  9. Li L, Wen X, Fu X, Wang F, Zhao N, Xiao FK, Wei W, Sun YH. MgO/Al2O3 sorbent for CO2 capture. Energy Fuels. 2010;24:5773–80.

    Article  CAS  Google Scholar 

  10. Anthony EJ. Solid looping cycles: a new technology for coal conversion. Ind Eng Chem Res. 2008;47:1747–53.

    Article  CAS  Google Scholar 

  11. Dean CC, Blamey J, Florin NH, Al-Jeboori MJ, Fennell PS. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production. Chem Eng Res Des. 2011;89:836–55.

    Article  CAS  Google Scholar 

  12. Abanades JC. The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3. Chem Eng J. 2002;90:303–6.

    Article  CAS  Google Scholar 

  13. Abanades JC, Álvarez D. Conversion limits in the reaction of CO2 with lime. Energy Fuels. 2003;17:308–15.

    Article  CAS  Google Scholar 

  14. Filitz R, Kierzkowska AM, Broda M, Müller CR. Highly efficient CO2 sorbents: development of synthetic, calcium-rich dolomites. Environ Sci Technol. 2012;46:559–65.

    Article  CAS  Google Scholar 

  15. Broda M, Kierzkowska AM, Müller CR. Application of the sol–gel technique to develop synthetic calcium-based sorbents with excellent carbon dioxide capture characteristics. ChemSusChem. 2012;5:411–8.

    Article  CAS  Google Scholar 

  16. Chrissafis K. Multicyclic study on the carbonation of CaO using different limestones. J Therm Anal Calor. 2007;89:525–9.

    Article  CAS  Google Scholar 

  17. Prigiobbe V, Hänchen M, Werner M, Baciocchi R, Mazzotti M. Mineral carbonation process for CO2 sequestration. Energy Procedia. 2009;1:4885–90.

    Article  Google Scholar 

  18. Jarvis K, Carpenter RW, Windman T, Kim Y, Nunez R, Alawheh F. Reaction mechanisms for enhancing mineral sequestration of CO2. Environ Sci Technol. 2009;43:6314–9.

    Article  CAS  Google Scholar 

  19. Xiong Y, Lord AS. Experimental investigations of the reaction path in the MgO–CO2–H2O system in solutions with various ionic strengths, and their applications to nuclear waste isolation. Appl Geochem. 2008;23:1634–59.

    Article  CAS  Google Scholar 

  20. Pfeiffer H, Ávalos-Rendón T, Lima E, Valente JS. Thermochemical and cyclability analyses of the CO2 absorption process on a Ca/Al layered double hydroxide. J Environ Eng. 2011;137:1058–65.

    Article  CAS  Google Scholar 

  21. Lindén I, Backman P, Brink A, Hupa M. Influence of water vapor on carbonation of CaO in the temperature range 400–550 °C. Ind Eng Chem Res. 2011;50:14115–20.

    Article  Google Scholar 

  22. Martínez I, Grasa G, Murillo R, Arias B, Abanades JC. Evaluation of CO2 carrying capacity of reactivated CaO by hydration. Energy Fuels. 2011;25:1294–301.

    Article  Google Scholar 

  23. Arias B, Grasa G, Abanades JC, Manovic V, Anthony EJ. The effect of steam on the fast carbonation reaction rates of CaO. Ind Eng Chem Res. 2012;51:2478–82.

    Article  CAS  Google Scholar 

  24. Manovic V, Anthony EJ. Carbonation of CaO-based sorbents enhanced by steam addition. Ind Eng Chem Res. 2010;49:9105–10.

    Article  CAS  Google Scholar 

  25. Dobner S, Sterns L, Graff RA, Squires AM. Cyclic calcination and recarbonation of calcined dolomite. Ind Eng Chem Process Des Dev. 1977;16:479–86.

    Article  CAS  Google Scholar 

  26. Sing K. The use of nitrogen adsorption for the characterisation of porous materials. Coll Surf A. 2001;187–188:3–9.

    Article  Google Scholar 

  27. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. London: Wiley; 1999.

    Google Scholar 

  28. Miller FA, Wilkins CH. Infrared spectra and characteristic frequencies of inorganic ions. Anal Chem. 1952;24:1253–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the project SENER-CONACYT 150358. Authors thank A. Tejeda and M. A. Canseco for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heriberto Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Rueda, A., Pfeiffer, H. Thermogravimetric analysis of the water vapor addition during the CaO carbonation process at moderate temperatures (40–70 °C). J Therm Anal Calorim 111, 1385–1390 (2013). https://doi.org/10.1007/s10973-012-2477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2477-1

Keywords

Navigation