Skip to main content
Log in

Synthesis and thermal studies of the cobalt zinc ferrous fumarato-hydrazinate

A precursor to obtain nanosize ferrites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanosize Co1−x Zn x Fe2O4 (x = 0, 0.1, 0.3, and 0.4) have been synthesized by the precursor combustion technique via autocatalytic combustion of the mixed-metal fumarato-hydrazinate precursors. A key feature of these precursors is that they decompose autocatalytically once ignited to give the monophasic nanocrystalline ferrite. This fact is confirmed by X-ray powder diffraction analysis. The thermal decomposition pattern of the precursors has been studied by thermogravimetric and differential thermal analysis. The precursors have also been characterized by FTIR and chemical analysis to fix the chemical composition. The Curie temperature (T c) of the “as-prepared” oxide was determined by alternating current susceptibility measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramana Reddy AV, Ranga Mohan G, Ravinder D, Boyanov BS. High-frequency dielectric behaviour of polycrystalline zinc substituted cobalt ferrites. J Mat Sci. 1999;34:3169–76.

    Article  Google Scholar 

  2. Josyulu OS, Sobhanadri J. DC conductivity and dielectric behaviour of cobalt-zinc ferrites. Phy Stat Sol (a). 1980;59:323–9.

    Article  CAS  Google Scholar 

  3. Veverka M, Veverka P, Jirak Z, Kaman O, Knizek K, Marysko M, Pollert E, Zaveta K. Synthesis and magnetic properties of Co1−x Zn x Fe2O4 nanoparticles as materials for magnetic fluid hyperthermia. J Magn Magn Mater. 2010;322:2386–9.

    Article  CAS  Google Scholar 

  4. Matsushita N, Ichinose M, Nakagawa S, Naoe M. Co–Zn ferrite films prepared by facing targets sputtering system for longitudinal recording layer. J Magn Magn Mater. 1999;193:68–70.

    Article  CAS  Google Scholar 

  5. Mukherjee K, Majumdar SB. Hydrogen sensing characteristics of wet chemical synthesized tailored Mg0.5Zn0.5Fe2O4 nanostructures. Nanotechnology. 2010;21:255504.

    Article  CAS  Google Scholar 

  6. Gedam NN, Padole PR, Rithe SK, Chaudhari GN. Ammonia gas sensor based on a spinel semiconductor, Co0.8Ni0.2Fe2O4 nanomaterial. J Sol-Gel Sci Tech. 2009;50:296–300.

    Article  CAS  Google Scholar 

  7. Chen Z, Gao L. Synthesis and magnetic properties of CoFe2O4 nanoparticles by using PEG as surfactant additive. Mat Sci Eng B. 2007;141:82–6.

    Article  CAS  Google Scholar 

  8. Vital A, Angermann A, Dittmann R, Graule T, Topfer J. Highly sinter-active (Mg–Cu)–Zn ferrite nanoparticles prepared by flame spray synthesis. Acta Mater. 2007;55:1955–64.

    Article  CAS  Google Scholar 

  9. Hua ZH, Chen RS, Li CL, Yang SG, Lu M, Gu XB, Du YW. CoFe2O4 nanowire arrays prepared by template-electrodeposition method and further oxidization. J Alloys Compd. 2007;427:199–203.

    Article  CAS  Google Scholar 

  10. Thakur S, Katyal SC, Singh M. Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. J Magn Magn Mat. 2009;321:1–7.

    Article  CAS  Google Scholar 

  11. Maensiri S, Masingboon C, Boonchom B, Seraphin S. A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scripta Mater. 2007;56(9):797–800.

    Article  CAS  Google Scholar 

  12. Jiang J. A facile method to the Ni0.8Co0.2Fe2O4 nanocrystalline via a refluxing route in ethylene glycol. Mater Lett. 2007;61:3239–42.

    Article  CAS  Google Scholar 

  13. Singhal S, Singh J, Barthwal SK, Chandra K. Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1-x Ni x Fe2O4). J Sol State Chem. 2005;178:3183–9.

    Article  CAS  Google Scholar 

  14. Verenkar VMS, Rane KS. Thermal and electrothermal analysis (ETA) of Iron (II) carboxylato-hydrazinates Part I – Ferrous fumarato-hydrazinate and ferrous succinato-hydrazinate. In: Dharwadkar SR, Bharadwaj SR, Mukherjee SK, Sood DD, editors. Proceedings of the 10th national symposium on thermal analysis, thermans. Kanpur: Indian Thermal Analysis Society; 1995. p. 171–4.

    Google Scholar 

  15. Verenkar VMS, Rane KS. Synthesis, characterization and thermal analysis of ferrous malato-hydrazinate. In: Ravindran PV, Sudersanan M, Misra NL, Venugopal V, editors. Proceedings of the 12th national symposium on thermal analysis, thermans. Gorakhpur: Indian Thermal Analysis Society; 2000. p. 194–7.

    Google Scholar 

  16. Sawant SY, Verenkar VMS, Mojumdar SC. Preparation, thermal, XRD, chemical and FTIR spectral analysis of NiMn2O4 nanoparticles and respective precursor. J Therm Anal Calorim. 2007;90:669–72.

    Article  CAS  Google Scholar 

  17. Gonsalves LR, Verenkar VMS, Mojumdar SC. Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3.6N2H4 A precursor to prepare Co0.5Zn0.5Fe2O4 nanoparticles. J Therm Anal Calorim. 2009;96(1):53–7.

    Article  CAS  Google Scholar 

  18. Gonsalves LR, Verenkar VMS, Mojumdar SC. Synthesis of cobalt nickel ferrite nanoparticles via autocatalytic decomposition of the precursor. J Therm Anal Calorim. 2010;100:789–92.

    Article  CAS  Google Scholar 

  19. Gonsalves LR, Verenkar VMS, Mojumdar SC. Synthesis and characterization of Co0.8Zn0.2Fe2O4 nanoparticles. J Therm Anal Calorim. 2011;104:869–73.

    Article  CAS  Google Scholar 

  20. More A, Verenkar VMS, Mojumdar SC. Nickel ferrite nanoparticles synthesis from novel fumarato-hydrazinate precursor. J Therm Anal Calorim. 2008;94(1):63–7.

    Article  CAS  Google Scholar 

  21. Porob RA, Khan SZ, Mojumdar SC, Verenkar VMS. Synthesis, TG, DSC and infrared spectral study of NiMn2(C4H4O4)3.6N2H4: a precursor for NiMn2O4 nano-particles. J Therm Anal Calorim. 2006;86(3):605–8.

    Article  CAS  Google Scholar 

  22. Sawant SY, Kannan KR, Verenkar VMS. Synthesis, characterisation and thermal analysis of nickel manganese fumarato-hydrazinate. In: Pillai CGS, Ramakumar KL, Ravindran PV, Venugopal V, editors. Proceedings of the 13th national symposium on thermal analysis, B.A.R.C. Mumbai: Indian Thermal Analysis Society; 2002. p. 154–5.

    Google Scholar 

  23. Jeffery GH, Bassett J, Mendham J, Denney RC. Vogel’s text book of quantitative inorganic analysis. 5th ed. England: Longman; 1989.

    Google Scholar 

  24. Braibanti A, Dallavalle F, Pellinghelli MA, Leporati E. The nitrogen–nitrogen stretching band in hydrazine derivatives and complexes. Inorg Chem. 1968;7:1430–3.

    Article  CAS  Google Scholar 

  25. Gul IH, Abbasi AZ, Amin F, Anis-ur-Rehman M, Maqsood A. Structural, magnetic and electric properties of Co1−x Zn x Fe2O4 synthesized by co-precipitation method. J Magn Magn Mater. 2007;311:494–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. S. Verenkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonsalves, L.R., Verenkar, V.M.S. Synthesis and thermal studies of the cobalt zinc ferrous fumarato-hydrazinate. J Therm Anal Calorim 108, 871–875 (2012). https://doi.org/10.1007/s10973-012-2343-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2343-1

Keywords

Navigation