Skip to main content
Log in

Thermal behavior of some antihistamines

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermogravimetry (TG), differential scanning calorimetry (DSC), polarized light thermal microscopy (PLTM), as well as X-ray powder diffraction (XRD) and Fourier transformed infrared spectroscopy (FTIR) were used to study the thermal behavior and the chemical structure of cimetidine, famotidine, ranitidine-HCl, and nizatidine. The TG–DSC curves show that the famotidine and ranitidine-HCl suffer decomposition during melting and they are thermally less stable in comparison with cimetidine and nizatidine, the latter being the most stable of all the drugs studied in this study. The DSC curves of famotidine and ranitidine-HCl show exothermic peaks immediately after the melting, confirming the occurrence of thermal decomposition. The DSC curves also show that the cimetidine and nizatidine have some thermal stability after melting. The thermal events shown in the PLTM images are consistent with the results shown in the TG–DSC and DSC curves. The XRD patterns show that the cimetidine and famotidine are less crystalline compared with ranitidine-HCl and nizatidine. The theoretical FTIR bands are in agreement with those obtained experimentally, and in some cases, no difference is observed between the theoretical and experimental values, even being identical in one of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hoyte FCL, Katial RK. Antihistamine therapy in allergic rhinitis. Immunol Allergy Clin N Am. 2011;31:509–43.

    Article  Google Scholar 

  2. Bavin PMG, et al. Cimetidine. In: Florey K, editor. Analytical profiles of drug substances. New York: Academic Press; 1984. p. 128–81.

    Google Scholar 

  3. Hohnjec M, et al. Ranitidine. In: Florey K, editor. Analytical profiles of drug substances. New York: Academic Press; 1984. p. 533–61.

    Google Scholar 

  4. Wozniak TJ. Nizatidine. In: Florey K, editor. Analytical profiles of drug substances. New York: Academic Press; 1984. p. 397–424.

    Google Scholar 

  5. The Merck Index, Merck & Co. Inc., 11th ed. New York: Rohway; 1989.

  6. Schmidt AC, Senfter N, Ferroni DC, Griesser UJ. Crystal polymorphism of local anaesthetic drugs. J Therm Anal Calorim. 2003;73:397–408.

    Article  CAS  Google Scholar 

  7. Plano D, Lizarraga E, Palop JA, Sanmartín C. Study of polymorphism of organosulfur and organoselenium compounds. J Therm Anal Calorim. 2011;105:1007–13.

    Article  CAS  Google Scholar 

  8. Giordano F, Novak C, Moyano JR. Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim Acta. 2001;380:123–51.

    Article  CAS  Google Scholar 

  9. Neto HS, Novak C, Matos JR. Thermal analysis and compatibility studies of prednicarbate with excipients used in semi solid pharmaceutical form. J Therm Anal Calorim. 2009;97:367–74.

    Article  Google Scholar 

  10. Bernardi LS, Oliveira PR, Murakami FS, Silva MAS, Borgmann SHM, Cardoso SG. Characterization of venlafaxine hydrochloride and compatibility studies with pharmaceutical excipients. J Therm Anal Calorim. 2009;97:729–33.

    Article  CAS  Google Scholar 

  11. Petit S, Mallet F, Petit MN, Coquerel G. Role of structural and macrocrystalline factors in the desolvation behaviour of cortisone acetate solvates. J Therm Anal Calorim. 2007;90:39–47.

    Article  CAS  Google Scholar 

  12. Wesolowski M, Szynkaruk P. Thermal decomposition of purine derivatives used in medicine. J Therm Anal Calorim. 2001;65:599–605.

    Article  CAS  Google Scholar 

  13. Schnitzler E, Kobelnik M, Sotelo GFC, Bannach G, Ionashiro M. Thermoanalytical study of purine derivatives compounds. Ecl Quim. 2004;29:71–8.

    CAS  Google Scholar 

  14. Bannach G, Arcaro R, Ferroni DC, Siqueira AB, Treu-Filho O, Ionashiro M, Schnitzler E. Thermal analytical study of some anti-inflammatory analgesic agents. J Therm Anal Calorim. 2010;102:163–70.

    Article  CAS  Google Scholar 

  15. Becke AD. Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

    Article  CAS  Google Scholar 

  16. Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.

    Article  CAS  Google Scholar 

  17. Petersson GA, et al. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms. J Chem Phys. 1988;89:2193–218.

    Article  CAS  Google Scholar 

  18. Petersson GA, Al-Laham MA. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J Chem Phys. 1991;94:6081–90.

    Article  CAS  Google Scholar 

  19. Goodson DZ, Sarpal SK, Wolfsberg M. Influence on isotope effect calculations of the method of obtaining force constants from vibrational data. J Phys Chem. 1982;86:659–63.

    Article  CAS  Google Scholar 

  20. Li X, Frisch MJ. Energy-represented DIIS within a hybrid geometry optimization method. J Chem Theory Comput. 2006;2:835–9.

    Article  CAS  Google Scholar 

  21. Frisch, MJ et al. Gaussian 09, Revision A.02.Wallingford: Gaussian, Inc.; 2009.

  22. Dennington R, Keith T, Millam J. GaussView, Version 5.0.8, Semichem Inc., Shawnee Mission KS; 2000–2008.

  23. Sanders GHW, et al. Discrimination of polymorphic forms of a drug product by localized thermal analysis. J Microsc. 2000;198:77–81.

    Article  CAS  Google Scholar 

  24. Souza FS, Macedo RO, Veras JWE. Studies of cimetidine pre-formulated and tablets for TG and DSC coupled to the photovisual system. Thermochim Acta. 2002;392–3:99–106.

    Article  Google Scholar 

  25. Lin SY, Cheng WT, Wang SL. Thermodynamic and kinetic characterization of polymorphic transformation of famotidine during grinding. Int J Pharm. 2006;318:86–91.

    Article  CAS  Google Scholar 

  26. Mirmehrabi M, et al. Characterization of tautomeric forms of ranitidine hydrochloride: thermal analysis, solid-state NMR, X-ray. J Cryst Growth. 2004;260:517–26.

    Article  CAS  Google Scholar 

  27. Al-Omar MA, Al-Mohizea AM. Famotidine. In: Brittain HG, editor. Profiles of drug substances, excipients and related methodology. Amsterdan: Elsevier; 2009. p. 115–51.

    Google Scholar 

Download references

Acknowledgements

The authors thank FUNDUNESP, PROPe-UNESP, PROPG-UNESP, FC-UNESP, and POSMAT-UNESP for the financial support. The authors also thank Prof. Dr. Massao Ionashiro by the use their equipment, TG–DTA, DSC, FTIR and the Center for Scientific Computing (NCC/GridUNESP) of Universidade Estadual Paulista (UNESP), Instituto de Quimica de Araraquara, UNESP Campus de Araraquara and CENAPAD—UNICAMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bannach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perpétuo, G.L., Gálico, D.A., Fugita, R.A. et al. Thermal behavior of some antihistamines. J Therm Anal Calorim 111, 2019–2028 (2013). https://doi.org/10.1007/s10973-012-2247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2247-0

Keywords

Navigation