Skip to main content
Log in

Prediction of thermal hazard of liquid organic peroxides by non-isothermal and isothermal kinetic model of DSC tests

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Liquid organic peroxides (LOPs) have been widely used as initiators of polymerization, hardening, or cross-linking agents. We evaluated a beneficial kinetic model to acquire accurate thermokinetic parameters to help preventing runaway reactions, fires or explosions in the process environment. Differential scanning calorimetry was used to assess the kinetic parameters, such as kinetic model, reaction order, heat of reaction (ΔH d), activation energy (E a), frequency factor (lnk 0), etc. The non-isothermal and isothermal kinetic models were compared to determine the validity of the kinetic model, and then applied to the thermal hazard assessment of commercial package contaminated with LOPs. Simulations of a 0.5-L Dewar vessel and 25-kg commercial package were performed. We focused on the thermal stability of different liquid system properties for LOPs. From the results, the optimal conditions were determined for avoiding violent heat effects that can cause a runaway reaction in storage, transportation, and manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

CP :

Specific heat capacity (J g−1 K−1)

CT:

Control temperature (°C)

E a :

Activation energy (kJ mol−1)

E 1 :

Activation energy of the 1st stage (kJ mol−1)

E 2 :

Activation energy of the 2nd stage (kJ mol−1)

ET:

Emergency temperature (°C)

f i :

Kinetic functions of the ith stage i = 1, 2, 3

f(α):

Kinetic functions

k 0 :

Pre-exponential factor (m3 mol−1 s−1)

k i :

Reaction rate constant (mol L−1 s−1) i = 1, 2

n :

Reaction order or unit outer normal on the boundary, dimensionless

NC:

Number of components, dimensionless

n i :

Reaction order of the ith stage, dimensionless i = 1, 2, 3

Q i :

Specific heat effect of a reaction (J kg−1)

q :

Heat flow (J g−1)

R :

Gas constant (8.31415 J K−1 mol−1)

r i :

Reaction rate of the ith stage (g sec−1) i = 1, 2, 3, 4

S :

Heat-exchange surface (m2)

SADT:

Self-accelerating decomposition temperature (°C)

T :

Absolute temperature (K)

T 0 :

Exothermic onset temperature (°C)

TCL:

Time to conversion limit (year)

TCR:

Critical temperature (°C)

TER:

Total energy release (kJ kg−1)

T e :

Ambient temperature (°C)

TMRiso :

Time to maximum rate under isothermal conditions (day)

T wall :

Temperature on the wall (°C)

t :

Time (sec)

W :

Heat power (W g−1)

z :

Autocatalytic constant, dimensionless

α:

Degree of conversion, dimensionless

γ:

Degree of conversion, dimensionless

ρ:

Density (kg m−3)

λ:

Heat conductivity (W m−1 K−1)

χ:

Heat transfer coefficient (W m−2 K−1)

H d :

Heat of decomposition (kJ kg−1)

References

  1. European agreement concerning the international carriage of dangerous goods by road (ADR). New York: United Nations; 2009.

  2. Recommendations on the transport of dangerous goods, manual of tests and criteria. 4th ed. New York: United Nations; 2003.

  3. Recommendations on the transport of dangerous goods, model regulations. 16th ed. New York: United Nations; 2009.

  4. Material Safety Data Sheet, Syrgis Performance Initiators Inc., 334 Phillips 311 Rd., Helena, AR 72342, 2007.

  5. Material Safety Data Sheet, PERGAN GmbH, Schlavenhorst 71, D-46395 Bocholt, 2010.

  6. Lin CP, Chang YM, Tseng JM, Shu CM. Comparisons of nth order kinetic algorithms and kinetic model simulation on HMX by DSC tests. J Therm Anal Calorim. 2010;100(2):607–14.

    Article  CAS  Google Scholar 

  7. Lin CP, Tseng JM, You ML, Chu YC, Shu CM. Modeling thermal decomposition kinetic algorithm on CL-20 and HMX. Inter J Chem React Eng. 2010;8:A146.

    Google Scholar 

  8. Tsai LC, Wei JM, Chu YC, Chen WT, Tsai FC, Shu CM, Lin CP. RDX kinetic model evaluation by nth order kinetic algorithms and model simulations. Adv Mater Res. 2011;189–193:1413–6.

    Article  Google Scholar 

  9. Lin CP, Tseng JM, Chang YM, Liu SH, Shu CM. Modeling liquid thermal explosion reactor containing tert-butyl peroxybenzoate. J Therm Anal Calorim. 2010;102:587–95.

    Article  CAS  Google Scholar 

  10. Lin CP, Chang CP, Chou YC, Chu YC, Shu CM. Modeling solid thermal explosion containment on reactor HNIW and HMX. J Hazard Mater. 2010;176:549–58.

    Article  CAS  Google Scholar 

  11. Steensma M, Schuurman P, Malow M, Krause U, Wehrstedt KD. Evaluation of validity of the UN SADT H.4 test for solid organic peroxides and self-reactive substances. J Hazard Mater. 2005;A117:89–102.

    Article  Google Scholar 

  12. Malow M, Michael-Schulz H, Wehrstedt KD. Evaluative comparison of two methods for SADT determination (UN H.1 and H.4). J Loss Prev Process Ind. 2010;23:740–4.

    Article  CAS  Google Scholar 

  13. Malow M, Wehrstedt KD. Prediction of the self-accelerating decomposition temperature (SADT) for solid organic peroxides from differential scanning calorimetry (DSC) measurements. J Hazard Mater. 2005;A120:21–4.

    Article  Google Scholar 

  14. Fisher HG, Goetz DD. Determination of self-accelerating decomposition temperatures using the accelerating rate calorimeter. J Loss Prev Process Ind. 1991;4:305–16.

    Article  Google Scholar 

  15. Fisher HG, Goetz DD. Determination of self-accelerating decomposition temperatures for self-reactive substances. J Loss Prev Process Ind. 1993;6(3):183–94.

    Article  Google Scholar 

  16. Li YF, Hasegawa K. On the thermal decomposition mechanism self-accelerating materials and evaluating method for their SADTs. Barcelona: 9th International Symposium Loss Prevention in the Process Industries; 1998, p. 555–569.

  17. Sun JH, Li YF, Hasegawa K. A study of self-accelerating decomposition temperature (SADT) using reaction calorimetry. J Loss Prev Process Ind. 2001;14(5):331–6.

    Article  Google Scholar 

  18. Whitmore MW, Wilberforce JK. Use of the accelerating rate calorimeter and the thermal activity monitor to estimate stability temperatures. J Loss Prev Process Ind. 1993;6(2):95–101.

    Article  Google Scholar 

  19. Wilberforce JK. The use of the accelerating rate calorimeter to determine the SADT of organic peroxides. Texas: Columbia Scientific Corp. Internal report; 1981.

  20. Yang D, Koseki H, Hasegawa K. Predicting the self-accelerating decomposition temperature (SADT) of organic peroxides based on non-isothermal decomposition behavior. J Loss Prev Process Ind. 2003;16(5):411–6.

    Article  Google Scholar 

  21. Yu YH, Hasegawa K. Derivation of the self-accelerating decomposition temperature for self-reactive substances using isothermal calorimetry. J Hazard Mater. 1996;45(2–3):193–205.

    Article  CAS  Google Scholar 

  22. Frank-Kamenetskii D. Diffusion and heat exchange in chemical kinetics. 2nd ed. New York: Plenum Press; 1969.

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to the donors of the National Science Council (NSC) in Taiwan under the contract number NSC 100-2218-E-468-001- for financial support. In addition, the authors are grateful to ACE Chemical Corp. Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ping Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, JM., Hsieh, TF., Chang, YM. et al. Prediction of thermal hazard of liquid organic peroxides by non-isothermal and isothermal kinetic model of DSC tests. J Therm Anal Calorim 109, 1095–1103 (2012). https://doi.org/10.1007/s10973-011-2125-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2125-1

Keywords

Navigation