Skip to main content
Log in

Potentialities of silane-modified silicas to regulate palladium nanoparticles sizes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A promising approach to control palladium nanoparticle sizes by application of silane modified silicas was suggested. The combination of reductive properties of silicon hydride groups and hydrophobic properties of alkylsilyl groups which act as agglomeration limiters for metal nanoparticles gives an opportunity to synthesize uniformly distributed particles with a specified size. Silicas modified with triethoxysilane (TES) and diisopropylchlorosilane (DIPCS), as well as, the combination of hexamethyldisilazane (HMDS) and triethoxysilane were applied for formation of such bifunctional matrices. Properties of the silane-modified silica samples and changes occurred during the formation of palladium nanoparticles were studied by IR spectroscopy. Thermal stability of surface chemical compounds was investigated by thermogravimetric analysis (TGA); low-temperature nitrogen adsorption was used to study structural properties of the applied materials. With the use of transmission electron microscopy (TEM) the dependence of palladium nanoparticle size on the nature of support surface layer was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roduner E. Nanoscopic materials size-dependent phenomena. Cambrige: RSC Publishing; 2006.

    Google Scholar 

  2. Rao CNR, Muller A, Cheetham AK. The chemistry of nanomaterials. Weinheim: Wiley-VCH; 2004.

    Book  Google Scholar 

  3. Ozin G, Arsenault A. Nanochemistry. A chemical approach to nanomaterials. Cambrige: RSC Publishing; 2005.

    Google Scholar 

  4. Yuranov I, Moeckli P, Suvorova E, Buffat P, Kiwi-Minsker L, Renken A. Pd/SiO2 catalysts: synthesis of Pd nanoparticles with the controlled size in mesoporous silicas. J Mol Catal A-Chem. 2003;192:239–51.

    Article  CAS  Google Scholar 

  5. Dharani DD, Sayari A. Applications of pore-expanded mesoporous silica 6. Novel synthesis of monodispersed supported palladium nanoparticles and their catalytic activity for Suzuki reaction. J Catal. 2007;246:60–5.

    Article  Google Scholar 

  6. Iqbal M, McLachlan J, Jia W, Braidy N, Botton G, Eichhorn SH. Ligand effects on the size and purity of Pd nanoparticles. J Therm Anal Calor. 2010;96(1):15–20.

    Article  Google Scholar 

  7. Ivashchenko N, Tertykh V, Yanishpolskii V, Khainakov S, Dikhtiarenko A. Controlled reduction of palladium nanoparticles on surface of chemically modified silicas. Materialwis Werkstof. 2011;42:64–9.

    Article  CAS  Google Scholar 

  8. Wang P, Wang Z, Li J, Bai Y. Preparation, characterizations, and catalytic characteristics of Pd nanoparticles encapsulated in mesoporous silica. Micropor Mesopor Mater. 2008;116:400–5.

    Article  CAS  Google Scholar 

  9. Zhu J, Konya Z, Puntes VF, Kiricsi I, Miao CX, Ager JW, Alivisatos AP, Somorjai A. Encapsulation of metal (Au, Ag, Pt) nanoparticles into the mesoporous SBA-15 structure. Langmuir. 2003;19:4396–401.

    Article  CAS  Google Scholar 

  10. Garcia-Martinez J, Linares N, Sinibaldi S, Coronado E, Ribera A. Incorporation of Pd nanoparticles in mesostructured silica. Micropor Mesopor Mater. 2009;117:170–7.

    Article  CAS  Google Scholar 

  11. Reed-Mundell JJ, Nadkarni VD, Kunz MJ, Fry WC, Fry LJ. Formation of new materials with thin metal layers through “directed” reduction of ions at surface-immobilized silyl hydride functional groups Silver on silica. Chem Mater. 1995;7:1655–60.

    Article  CAS  Google Scholar 

  12. Katok KV, Tertykh VA, Yanishpolskii VV. Synthesis and application of metal-containing silicas. In: Vaseashta A, Mihailescu IN, editors. NATO science for peace and security series B: physics and biophysics “functionalized nanoscale materials, devices, and systems”. Philadelphia: Springer; 2008. p. 335–9.

  13. Tertykh VA, Katok KV, Yanishpolskii VV. Reduction nanoparticles of gold in surface layer of modified silica. Russ J Phys Chem. 2008;82:1438–41.

    Article  CAS  Google Scholar 

  14. Katok KV, Tertykh VA, Yanishpolskii VV. Synthesis and application of metal-containing silicas. In: Reithmaier JP, Petkov P, Kulisch W, Popov C, editors. NATO science for peace and security series B: physics and biophysics “nanostructured materials for advanced technological applications”. Philadelphia: Springer; 2009. p. 44–9.

    Google Scholar 

  15. Ivashchenko NA, Katok KV, Tertykh VA, Yanishpolskii VV, Oleksenko LP, Lutsenko LV, Khainakov SA. Palladium nanoparticles in the surface layer of hydridesilica and their activity in carbon monoxide oxidation. Kharkov Uni Bull Chem Ser. 2010;895:241–7.

    Google Scholar 

  16. Besson S, Gacoin T, Ricolleau C, Boilot J-P. Silver nanoparticle growth in 3D-hexagonal mesoporous silica films. Chem Commun. 2003;360–1.

  17. Ivashchenko NA, Katok KV, Tertykh VA, Yanishpolskii VV, Khainakov SA. Silica with grafted silicon hydride groups and its application for preparation of palladium nanoparticles. Int J Nanopart. 2011;4:350–8.

    Article  CAS  Google Scholar 

  18. Losev VN, Volkova GV, Maznyak NV, Trofimchuk AK, Yanovskaya ES. Palladium adsorption on silica modified with N-allyl-N′-propylthiourea and subsequent determination by spectrometry. Russ J Anal Chem. 1999;54:1254–8.

    Google Scholar 

  19. Smith AL. Applied infrared spectroscopy. New York: Wiley; 1979.

    Google Scholar 

  20. Budkevich GB, Slinyakova IB, Neimark IE, Zhygailo JaI. Thermooxidative destruction of hydropolysiloxane xerogels. Ukr Chem J. 1971;37:429–33.

    CAS  Google Scholar 

  21. Denisova TI. Thermal stability of silica-polyorganosiloxane systems. J Therm Anal Calorim. 2000;62(2):523–7.

    Article  CAS  Google Scholar 

  22. Campostrini R, Sicurelli A, Ischia M, Carturan G. Pyrolysis study of a hydride-sol-gel silica Part I. Chemical aspects. J Therm Anal Calorim. 2007;89(2):633–41.

    Article  CAS  Google Scholar 

  23. Slinyakova IB, Budkevich GB, Neimark IE. Hydrophobic hydridesilica adsorbent with Si-H bonds. Rep Ac Sci USSR. 1984;154:6924.

    Google Scholar 

  24. Teranishi T, Miyake M. Size control of palladium nanoparticles and their crystal structures. Chem Mater. 1998;10:594–600.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was partially supported by the Visegrad Fund (Contract number 51000985), European Community, Seventh Framework Programme (FP7/2007-2013), Marie Curie International Research Staff Exchange Scheme (IRSES, grant no. 230790) and MEC 06 MAT2006 01997.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ivashchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivashchenko, N., Tertykh, V., Yanishpolskii, V. et al. Potentialities of silane-modified silicas to regulate palladium nanoparticles sizes. J Therm Anal Calorim 108, 1121–1127 (2012). https://doi.org/10.1007/s10973-011-2067-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2067-7

Keywords

Navigation