Skip to main content
Log in

Thermal behavior, non-isothermal decomposition reaction kinetics and thermal-safety evaluation on N-2,4-dinitrophenyl-3,3-dinitroazetidine under two different pressures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

As N-2′,4′-dinitrophenyl-3,3-dinitroazetidine (DNPDNAZ) is an important derivative of 3,3-dinitroazetidine, its thermal behavior was studied under 0.1 and 2 MPa by the differential scanning calorimetry (DSC) method. The results of this study show that there are one melting process and two exothermic decomposition processes. Its kinetic parameters of the intense exothermic decomposition process were obtained from the analysis of the DSC curves. The activation energy and the mechanism function under 0.1 MPa are 167.26 kJ mol−1 and f(α) = 3(1 + α)2/3[(1 + α)1/3 − 1]−1/2, respectively, and the said parameters under 2 MPa are 169.30 kJ mol−1 and f(α) = 3(1 + α)2/3[(1 + α)1/3 − 1]−1/2, respectively. The specific heat capacity of DNPDNAZ was determined using a continuous C p mode of micro-calorimeter. Using the relationship between C p and T with the thermal decomposition parameters, the time of the thermal decomposition from initialization to thermal explosion (adiabatic time-to-explosion, t TIAD), the self-accelerating decomposition temperature (T SADT ), thermal ignition temperature (T TIT), critical temperatures of thermal explosion (T b), and half-life (t 1/2) were obtained to evaluate its thermal safety under different pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Archibald TG, Gilardi R, Baum K, George C. Synthesis and X-ray crystal structure of 1,3,3-trinitroazetidine. J Org Chem. 1990;55:2920–4.

    Article  CAS  Google Scholar 

  2. Hiskey MA, Coburn MD, Mitchell MA, Benicewicz BC. Synthesis of 3,3-dinitroazetidine from 1-t-butyl-3,3-dinitroazetidine. J Heterocycl Chem. 1992;29:1855–6.

    Article  CAS  Google Scholar 

  3. Hiskey MA, Stincipher MM, Brown JE. Synthesis and initial characterization of some energetic salts of 3,3-dinitroazetidine. J Energy Mater. 1993;11:157–65.

    Article  CAS  Google Scholar 

  4. Ma HX, Yan B, Li ZN, Guan YL, Song JR, Xu KZ, Hu RZ. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTO·DNAZ. J Hazard Mater. 2009;169:1068–73.

    Article  CAS  Google Scholar 

  5. Ma HX, Yan B, Li ZN, Song JR, Hu RZ. Synthesis, molecular structure, non-isothermal decomposition kinetics and adiabatic time to explosion of 3, 3-dinitroazetidinium 3,5-dinitrosalicylate. J Therm Anal Calorim. 2009;95:437–44.

    Article  CAS  Google Scholar 

  6. Ma HX, Yan B, Li JF, Ren YH, Chen YS, Zhao FQ, Song JR, Hu RZ. Molecular structure, thermal behavior and adiabatic time-to-explosion of 3,3-dinitroazetidinium picrate. J Mol Struc. 2010;981:103–10.

    Article  CAS  Google Scholar 

  7. Ma HX, Yan B, Ren YH, Guan YL, Zhao FQ, Song JR, Hu RZ. Thermal behavior and thermal safety on 3,3-dinitroazetidinium salt of perchloric acid. J Therm Anal Calorim. 2011;103:569–75.

    Article  CAS  Google Scholar 

  8. Yan B, Ma HX, Hu Y, Guan YL, Song JR. 1-(2,4-Dinitrophenyl)-3,3-dinitroazetidine. Acta Crystallogr E. 2009;65:o3215.

    Article  Google Scholar 

  9. Yan B, Ma HX, Li JF, Guan YL, Song JR. 1-Benzoyl-3,3-dinitroazetidine. Acta Crystallogr E. 2010;66:o57.

    Article  Google Scholar 

  10. Ma HX, Song JR, Zhao FQ, Hu RZ, Xiao HM. Nonisothermal reaction kinetics and computational studies on the properties of 2,4,6,8-tetranitro-2,4,6,8-tetraazabicyclo [3,3,1] onan-3,7-dione (TNPDU). J Phys Chem A. 2007;111:8642–9.

    Article  CAS  Google Scholar 

  11. Zhang TL, Hu RZ, Xie Y, Li FP. The estimation of the critical temperature of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  CAS  Google Scholar 

  12. Wang QF, Wang L, Zhang XW, Mi ZT. Thermal stability and kinetic of decomposition of nitrated HTPB. J Hazard Mater. 2009;172:1659–64.

    Article  CAS  Google Scholar 

  13. Smith LC. An approximate solution of the adiabatic explosion problem. Thermochim Acta. 1975;13:1–6.

    Article  CAS  Google Scholar 

  14. Hu RZ, Zhang H, Xia ZM, Guo PJ, Gao SL, Shi QZ, Lu GE, Jiang JY. Estimation formulae of the critical rate of temperature rise for thermal explosion of exothermic decomposition reaction system of energetic materials. Chin J Energy Mater. 2003;11:130–3 (in Chinese).

    CAS  Google Scholar 

  15. Zhao HA, Hu RZ, Wang XJ, Zhao FQ, Gao HX, Zhang H, Zhang XL, Feng Y, Ma HX. Thermal safety of 1,3,3-trinitroazetidine (TNAZ). Acta Chim Sinica. 2009;67:2536–40 (in Chinese).

    CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (No.21073141), the Provincial Natural Foundation of Shaanxi (No.2009JQ2002), and the Education Committee Foundation of Shaanxi Province (No.11JK0564 and 11JK0582).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. X. Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, B., Ma, H.X., Zhao, N.N. et al. Thermal behavior, non-isothermal decomposition reaction kinetics and thermal-safety evaluation on N-2,4-dinitrophenyl-3,3-dinitroazetidine under two different pressures. J Therm Anal Calorim 110, 1253–1257 (2012). https://doi.org/10.1007/s10973-011-2053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2053-0

Keywords

Navigation