Skip to main content
Log in

Thermal analysis and kinetic study of Petroşani bituminous coal from Romania in comparison with a sample of Ural bituminous coal

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid fuels represent one of the most used sources of energy in many countries. In terms of ranking for the coal deposits, Romania occupies the 26th place in the world, and the 11th place in Europe, with reserves of 22 million tones of bituminous coal (BC) and 472 million tones of lignite. The National Bituminous Coal Company extracts the most significant amount of BC from the Jiu Valley area, a Subcharpatian basin in the Parâng Mountains. In the present article, the BC extracted from the Livezeni depth mine next to Petroşani city is investigated from the microstructural, thermal, and kinetic point of view, in comparison with a sample from Ural Mountains in Russia. Scanning electron microscopy, FTIR spectroscopy, and thermal analysis (TG/DSC/DTA in air and inert atmosphere) measurements were performed. The KAS isoconversional kinetic method was applied for the in-depth understanding of thermal decompositions and burning processes that occur. Even if the thermal behavior of the two samples is generally similar, the non-isothermal kinetic study revealed important differences in the pathways of the oxidative decomposition of volatiles and formation of coke. Also, the kinetics of coke burning depends only on the amount of fix carbon, regardless of the provenience of BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. “World consumption of Primary Energy by Energy Type and Selected Country Groups, 1980–2004” (XLS). Energy Information Administration, U.S. Department of Energy. July 31 2006.

  2. Net Generation by Energy Source by Type of Producer, Energy Infirmation Administration. Washington: U.S. Department of Energy; 2006.

  3. L’electricite en France en 2006, DGEMO/Observatoire de l’energie; 2007.

  4. McMullan JT, Morgan R, Murray RB. Energy resources, resource and environmental science series. Amsterdam: Wiley; 1978.

    Google Scholar 

  5. Jankes G, Cvetkovic O, Milovanovic N, Ercegovac M, Adzic M, Stamenic M. Rapid pyrolysis of Serbian soft brown coals. Therm Sci. 2009;13:113–25.

    Article  Google Scholar 

  6. Kok M. Recent developments in the application of thermal analysis techniques in fossil fuels. J Therm Anal Calorim. 2008;91:763–73.

    Article  CAS  Google Scholar 

  7. Kok M, Keskin C. Calorific value determination of coals by DTA and ASTM methods. Comparative study. J Therm Anal Calorim. 2001;64:1265–70.

    Article  CAS  Google Scholar 

  8. Dziejowski J, Bialobrzewski I. Calorimetric studies of solid wastes, sewage sludge, wastwaters and their effects on soil biodegradation processes. J Therm Anal Calorim. 2010;104:161–8.

    Article  Google Scholar 

  9. Kok M, Pokol G, Keskin C, Madarasz J, Bagci S. Combustion characteristics of lignite and oil shale samples by thermal analysis techniques. J Therm Anal Calorim. 2004;76:247–54.

    Article  Google Scholar 

  10. Kok M. An investigation into the combustion curves of lignites. J Therm Anal Calorim. 2001;64:1319–23.

    Article  CAS  Google Scholar 

  11. Slovak V, Taraba B. Effect of experimental conditions on parameters derived from TG-DSC measurements of low-temperature oxidation of coal. J Therm Anal Calorim. 2010;101:641–6.

    Article  CAS  Google Scholar 

  12. Sis H. Evaluation of combustion characteristics of different size Elbistan lignite by using TG/DTG and DTA. J Therm Anal Calorim. 2007;88:863–70.

    Article  CAS  Google Scholar 

  13. Chen Q, He R, Xu X, Liang Z, Chen C. Experimental study on pore structure and apparent kinetic parameters of char combustion in kinetics-controlled regime. Energy Fuels. 2004;18:1562–8.

    Article  CAS  Google Scholar 

  14. Liu H. Combustion of coal chars in O2/CO2 and O2/N2 mixtures. In: Chen Q, He R, Xu X, Liang Z, Chen C, editors. Comparative study with non-isothermal thermogravimetric analyzer (TGA) test. Energy Fuels. 2009; 23:4278–85.

  15. Ballester J, Jimenez S. Kinetic parameters for the oxidation of pulverised coal as measured from drop tube test. Combust Flame. 2005;142:210–22.

    Article  CAS  Google Scholar 

  16. Ozbas KE, Kok MV, Hicyilmaz C. Comparative kinetic analysis of raw and cleaned coals. J Therm Anal Calorim. 2002;69:541–9.

    Article  CAS  Google Scholar 

  17. Dumanli AG, Tas S, Yurum Y. Co-firing of biomass with coals Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood. J Therm Anal Calorim. 2011;103:925–33.

    Article  CAS  Google Scholar 

  18. Roslyakov PV, Ionkin IL, Pleshanov KA. Efficient combustion of fuel with controlled incomplete combustion. Therm Eng. 2009;56:22–5.

    Article  Google Scholar 

  19. Van de Velden M, Baeyens J, Boukis I. Modeling CFB biomass pyrolysis reactors. Biomass Bioenerg. 2008;32:128–39.

    Article  Google Scholar 

  20. Chau J, Sowlati T, Sokhansanj S, Preto F, Melin S, Bi X. Techno-economic analysis of wood biomass boilers for the greenhouse industry. Appl Energy. 2009;86:364–71.

    Article  Google Scholar 

  21. Porteiro J, Collazo J, Patino D, Granada E, Moran Gonzalez JC, Míguez IL. Numerical modeling of a biomass pellet domestic boiler. Energy Fuels. 2009;23:1067–75.

    Article  CAS  Google Scholar 

  22. Conesa JA, Marcilla A, Caballero JA, Font R. Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data. J Anal Appl Pyrol. 2001;58:617–33.

    Article  Google Scholar 

  23. Branca C, di Blasi C. Global interinsic kinetics of wood oxidation. Fuel. 2004;83:81–7.

    Article  CAS  Google Scholar 

  24. Caballero JA, Conesa JA. Mathematical consideration for nonisothermal kinetics in thermal decomposition. J Anal Appl Pyrol. 2005;73:85–100.

    Article  CAS  Google Scholar 

  25. Burnham AK, Braun RL. Global kinetic analysis of complex materials. Energy Fuels. 1999;13:1–22.

    Article  CAS  Google Scholar 

  26. Cai J, Liu R. Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: application to simulated and real kinetic conversion data. J Phys Chem B. 2007;111:10681–6.

    Article  CAS  Google Scholar 

  27. di Blasi C. Modeling chemical and physical processes of wood and biomass pyrolysis. Progr Energ Comb Sci. 2008;34:47–90.

    Article  CAS  Google Scholar 

  28. Blum I, Barca F. Chimia şi prepararea combustibililor solizi. Bucureşti: Editura Didactică şi Pedagogică; 1966.

    Google Scholar 

  29. Elbeyli IY, Piskin S. Combustion and pyrolysis characteristics of Tuncbilek lignite. J Therm Anal Calorim. 2006;83:721–6.

    Article  CAS  Google Scholar 

  30. Peinter PC, Starsinic M, Coleman MM. Determination of functional groups in coal by fourier transform interferometry, fourier transform infrared spectroscopy. New York: Academic Press; 1985. 4:169.

  31. Joshi VS, Joshi MJ. FTIR spectroscopic, thermal and growth morphological studies of calcium hydrogen phosphate dehydrate crystals. Cryst Res Technol. 2003;38:817–21.

    Article  CAS  Google Scholar 

  32. Wang H, Dlugogorski BZ, Kennedy EM. Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modeling. Prog Energy Combust Sci. 2003;29:487–513.

    Article  CAS  Google Scholar 

  33. Feng B, Bhatia SK. On the validity of thermogravimetric determination of carbon gasification kinetics. Chem Eng Sci. 2002;57:2907–20.

    Article  CAS  Google Scholar 

  34. Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from hystorical perspective. Int Rev Phys Chem. 2000;19:45–60.

    Article  CAS  Google Scholar 

  35. Vyazovkin S. Reply to What is meant by the term ‘variable activation energy’ when applied in the kinetic analyses of solid state decompositions (crystolysis reactions)? Thermochim Acta. 2003;397:269–71.

    Article  CAS  Google Scholar 

  36. Vyazovkin S, Lesnikovich AI. Practical application of isoconversional methods. Thermochim Acta. 1992;203:177–85.

    Article  CAS  Google Scholar 

  37. Vyazovkin S, Lesnikovich AI, Lyutsko VA. Thermal decomposition of tetrazole. 2. Kinetic analysis. Thermochim Acta. 1990;165:17–22.

    Article  CAS  Google Scholar 

  38. Vyazovkin S, Sbirrazzuoli N. Kinetic methods to study isothermal and nonisothermal epoxyanhydride cure. Macromol Chem Phys. 1999;200:2294–303.

    Article  CAS  Google Scholar 

  39. Zhang XY, Vyazovkin S. Curing of diglycidyl ether of bisphenol P with nitro derivatives of amine compounds, 2,3-Nitro-1,2-phenylenediamine. Macromol Chem Phys. 2005;206:1084–9.

    Article  CAS  Google Scholar 

  40. Zhou D, Schmitt EA, Zhang GCZ, Law D, Wight CA, Vyazovkin S, Grant DJ. Model-free treatment of the dehydration kinetics of nedocromil sodium trihydrate. J Pharm Sci. 2003;92:1367–76.

    Article  CAS  Google Scholar 

  41. Zhou D, Schmitt EA, Zhang GCZ, Law D, Vyazovkin S, Wight CA, Grant DJ, Grant DJ. Crystallization kinetics of amorphous nifedipine studied by model-fitting and model-free approaches. J Pharm Sci. 2003;92:1779–92.

    Article  CAS  Google Scholar 

  42. Duan Y, Li J, Yang Y, Hu L, Wang Z, Liu Y, Wang C. Kinetic analysis on the non-isothermal dehydration by integral master-plots method and TG-FTIR study of zinc acetate dihydrate. J Anal Appl Pyrol. 2008;83:1–6.

    Article  CAS  Google Scholar 

  43. Slovak V. Determination of kinetic parameters by direct non-linear regression from TG curves. Thermochim Acta. 2001;372:175–82.

    Article  CAS  Google Scholar 

  44. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  45. Akahira T, Sunose T (Trans. 1969). Joint convention of four electrical institutes. Paper no. 246. Res Rep Chiba Inst Technol. 1971;16:22–31.

  46. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  47. Chen CX, Ma XQ, Liu K. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Appl Energy. 2011;88:3189–96.

    Article  CAS  Google Scholar 

  48. Li DM, Chen LM, Zhang XW, Ye N, Xiang FG. Pyrolytic characteristics and kinetic studies of three kinds of red algae. Biomass Bioenerg. 2011;35:1765–72.

    Article  CAS  Google Scholar 

  49. Leroy V, Cancellieri D, Leoni E, Rossi JL. Kinetic study of forest fuels by TGA: model-free approach for the prediction of phenomena. Thermochim Acta. 2010;497:1–6.

    Article  CAS  Google Scholar 

  50. Wang CA, Liu YH, Zhang XM, Che D. A study on coal properties and combustion characteristics of blended coals in northwestern China. Energy Fuels. 2011;25:3634–45.

    Article  CAS  Google Scholar 

  51. Xiao HM, Ma XQ, Lai ZY. Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal. Appl Energy. 2009;86:1741–5.

    Article  CAS  Google Scholar 

  52. Rotaru A, Gosa M, Rotaru P. Computational thermal and kinetic analysis software for non-isothermal kinetics by standard procedure. J Therm Anal Calorim. 2008;94:367–71.

    Article  CAS  Google Scholar 

  53. Rotaru A, Gosa M. Computational thermal and kinetic analysis. Complete standard procedure to evaluate the kinetic triplet form non-isothermal data. J Therm Anal Calorim. 2009;97:421–6.

    Article  CAS  Google Scholar 

  54. Rotaru A, Brătulescu G, Rotaru P. Thermal analysis of azoic dyes; part I. Non-isothermal decomposition kinetics of [4-(4-chlorobenzyloxy)-3-methylphenyl](p-tolyl)diazene in dynamic air atmosphere. Thermochim Acta. 2009;489(1–2):63–9.

    Article  CAS  Google Scholar 

  55. Rotaru A, Moanţă A, Popa G, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part IV. Non-isothermal kinetics of 2-allyl-4-((4-(4-methylbenzyloxy) phenyl)diazenyl) phenol in dynamic air atmosphere. J Therm Anal Cal. 2009;97(2):485–91.

    Article  CAS  Google Scholar 

  56. Rotaru A, Constantinescu C, Mandruleanu A, Rotaru P, Moldovan A, Gyoryova K, Dinescu M, Balek V. Matrix assisted pulsed laser evaporation of zinc benzoate for ZnO thin films and non-isothermal decomposition kinetics. Therm Acta. 2010;498:81–91.

    Article  CAS  Google Scholar 

  57. Kucerik J, Prusova A, Rotaru A, Flimel K, Janacek J, Conte P. DSC study of hyaluronan drying and hydration. Thermochim Acta. 2011;523:245–9.

    Article  CAS  Google Scholar 

  58. Liu H. Combustion of coal chars in O2/CO2 and O2/N2 mixtures: a comparative study with non-isothermal thermogravimetric analyzer (TGA) test. Energy Fuels. 2009;23:4278–85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Rotaru.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotaru, A. Thermal analysis and kinetic study of Petroşani bituminous coal from Romania in comparison with a sample of Ural bituminous coal. J Therm Anal Calorim 110, 1283–1291 (2012). https://doi.org/10.1007/s10973-011-2022-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2022-7

Keywords

Navigation