Skip to main content
Log in

Thermal analysis of perfluorosulfonated ionomers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal properties of perfluorosulfonated ionomer (PFSI) precursors, H-type, and Na-type PFSIs with various ion exchange capacity of 0.36, 0.88, 1.02, and 1.20 mequiv./g in the form of pellets were investigated by thermogravimetry and differential scanning calorimetry. It is revealed that the Na-type PFSIs have the highest thermal stability, and the mechanism of thermal degradation of H-type PFSIs is different from those of precursors and Na-type PFSIs. The DSC measurements indicate that the thermal behaviors of the precursors, the H- and Na- type PFSIs are very different due to the difference of the end groups of the pedants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Heitner-Wirguin C. Recent advances in perfluorinated ionomer membranes: structure, properties and applications. J Membr Sci. 1996;120:1–33.

    Article  CAS  Google Scholar 

  2. Grot W. Fluorinated ionomers. Norwich: William Andrew Publishing; 2007.

    Google Scholar 

  3. Li QF, He RH, Jensen JO, Bjerrum NJ. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem Mater. 2003;15(26):4896–915.

    Article  CAS  Google Scholar 

  4. Zhang J, Xie Z, Zhang J, Tang Y, Song C, Navessin T, et al. High temperature PEM fuel cells. J Power Sources. 2006;160(2):872–91.

    Article  CAS  Google Scholar 

  5. Matos B, Aricó E, Linardi M, Ferlauto A, Santiago E, Fonseca F. Thermal properties of Nafion-TiO2 composite electrolytes for PEM fuel cell. J Therm Anal Calorim. 2009;97(2):591–4.

    Article  CAS  Google Scholar 

  6. Wilkie CA, Thomsen JR, Mittleman ML. Interaction of poly(methyl methacrylate) and Nafions. J Appl Polym Sci. 1991;42(4):901–9.

    Article  CAS  Google Scholar 

  7. Lage LG, Delgado PG, Kawano Y. Thermal stability and decomposition of Nafion membranes with different cations—using high-resolution thermogravimetry. J Therm Anal Calorim. 2004;75(2):521–30.

    Article  CAS  Google Scholar 

  8. Lage LG, Delgado PG, Kawano Y. Vibrational and thermal characterization of Nafion membranes substituted by alkaline earth cations. Eur Polym J. 2004;40(7):1309–16.

    Article  Google Scholar 

  9. Tiwari SK, Nema SK, Agarwal YK. Thermolytic degradation behavior of inorganic ion-exchanger incorporated Nafion-117. Thermochim Acta. 1998;317(2):175–82.

    Article  CAS  Google Scholar 

  10. Surowiec J, Bogoczek R. Studies on the thermal stability of the perfluorinated cation-exchange membrane Nafion-417. J Therm Anal Calorim. 1988;33(4):1097–102.

    Article  Google Scholar 

  11. Iwai Y, Yamanishi T. Thermal stability of ion-exchange Nafion N117CS membranes. Polym Degrad Stab. 2009;94(4):679–87.

    Article  CAS  Google Scholar 

  12. Bas C, Reymond L, Danerol A-s, Alberola ND, Rossinot E, Flandin L. Key counter ion parameters governing polluted nafion membrane properties. J Polym Sci Part B. 2009;47(14):1381–92.

    Article  CAS  Google Scholar 

  13. Moore RB, Martin CR. Chemical and morphological properties of solution-cast perfluorosulfonate ionomers. Macromolecules. 1988;21(5):1334–9.

    Article  CAS  Google Scholar 

  14. de Almeida SH, Kawano Y. Thermal behavior of Nafion membranes. J Therm Anal Calorim. 1999;58(3):569–77.

    Article  Google Scholar 

  15. Moore RB, Martin CR. Morphology and chemical properties of the Dow perfluorosulfonate ionomers. Macromolecules. 1989;22(9):3594–9.

    Article  CAS  Google Scholar 

  16. Page KA, Cable KM, Moore RB. Molecular origins of the thermal transitions and dynamic mechanical relaxations in perfluorosulfonate ionomers. Macromolecules. 2005;38(15):6472–84.

    Article  CAS  Google Scholar 

  17. Feldheim DL, Lawson DR, Martin CR. Influence of the sulfonate countercation on the thermal stability of nafion perfluorosulfonate membranes. J Polym Sci Part B. 1993;31(8):953–7.

    Article  CAS  Google Scholar 

  18. Luan Y, Zhang Y. Membrane degradation. In: Wang H, Li H, Yuan X-Z, editors. PEM fuel cell failure mode analysis. Boca Raton: CRC Press; 2011. p. 73–108.

    Chapter  Google Scholar 

  19. Luan Y, Zhang H, Zhang Y, Li L, Li H, Liu Y. Study on structural evolution of perfluorosulfonic ionomer from concentrated DMF-based solution to membranes. J Membr Sci. 2008;319(1–2):91–101.

    Article  CAS  Google Scholar 

  20. Alentiev A, Kostina J, Bondarenko G. Chemical aging of Nafion: FTIR study. Desalination. 2006;200(1–3):32–3.

    Article  CAS  Google Scholar 

  21. Collette FM, Lorentz C, Gebel G, Thominette F. Hygrothermal aging of Nafion. J Membr Sci. 2009;330(1–2):21–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Shandong Dongyue Shenzhou New Material Co. Ltd. to provide the PFSI precursors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinsheng Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, Y., Zhao, J., Yang, J. et al. Thermal analysis of perfluorosulfonated ionomers. J Therm Anal Calorim 110, 1119–1126 (2012). https://doi.org/10.1007/s10973-011-2020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2020-9

Keywords

Navigation