Skip to main content
Log in

Phase behavior of dodecane—tetradecane binary system confined in SBA-15

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Phase behavior of dodecane–tetradecane (n-C12H26–C14H30, n-C12–C14) binary system in bulk and confined in SBA-15 (pore diameters 8 nm; 15.9 nm) has been investigated by differential scanning calorimetry and transmission electron microscopy. The bulk system possesses some special phases relating to the rotator phase in normal alkanes. Dodecane–tetradecane mixtures confined in SBA-15 (8 nm) are a system miscible both in solid and liquid states with a phase diagram of a smooth curve. Dodecane–tetradecane system confined in SBA-15 (15.9 nm) exhibits not only solid–liquid (s–l) in all compositions but solid–solid transition in mole fractions of tetradecane 0.1–0.6, which forms a phase diagram of “loop line” shape. Melting temperatures of n-C12–C14/SBA-15 (8 nm) are lower than those of n-C12–C14/SBA-15 (15.9 nm) in all mole fractions. The evolution of the phase diagram of n-C12–C14 confined in 8 nm, 15.9 nm pore sizes of SBA-15 and in bulk, respectively, shows a dramatic effect of confinement on phase behavior of normal alkane mixtures. The s–l phase boundary lines of n-C12–C14/SBA-15 (8, 15.9 nm) are fitted as \( T_{\text{m,r}}^{x} \) being [\( xT_{{\text{m} ,r}}^{A} + \left( {1 - x} \right)T_{\text{m,r}}^{B} - D \)], where D is a polynomial ∑ a i x i, i = 1, 2,···, n (A = C14, B = C12).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jackson CL, Mckenna GB. The melting behavior of organic materials confined in porous solids. J Chem Phys. 1990;93:9001–2.

    Article  Google Scholar 

  2. Schreiber A, Ketelsen I, Findenegg GH. Melting of freezing of water in ordered mesoporous silica materials. Phys Chem Chem Phys. 2001;3:1185–95.

    Article  CAS  Google Scholar 

  3. Alcoutlabi M, McKenna GB. Effects of confinement on material behavior at the nanometer size scale. J Phys Condens Matter. 2005;17:R461–524.

    Article  CAS  Google Scholar 

  4. Simionesco CA, Coasne B, Dosseh G, Dudziak G, Gubbins KE, Radhakrishnan R. Bartkowiak. effects of confinement on freezing and melting. J Phys Condens Matter. 2006;18:R15–68.

    Article  Google Scholar 

  5. Zheng W, Simon SL. Confinement effects on the glass transition of hydrogen bonded liquids. J Chem Phys. 2007;127(194501):1–11.

    Google Scholar 

  6. Chen S, Wu GZ, Sha ML, Huang SR. Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes. J Am Chem Soc. 2007;129:2416–7.

    Article  CAS  Google Scholar 

  7. Jähnert S, Chávez FV, Schaumann GE, Schreiber A, Schönhoff M, Findenegg GH. Melting and freezing of water in cylindrical silica nonopores. Phys Chem Chem Phys. 2008;10:6039–51.

    Article  Google Scholar 

  8. Amanuel S, Bauer H, Bonventre P, Lasher D. Nonfreezing interfacial layers of cyclohexane in nanoporous silica. J Phys Chem C. 2009;113:18983–6.

    Article  CAS  Google Scholar 

  9. Sha M, Wu GZ, Liu YS, Tang ZF, Fang HP. Drastic phase transition in ionic liquid [Dmim][Cl] confined between graphite walls: new phase formation. J Phys Chem C. 2009;113:4618–22.

    Article  CAS  Google Scholar 

  10. Liu XX, Wang Q, Huang XF, Yang SH, Li CX, Li X, Niu XJ, Shi QF, Sun G, Lu KQ. Liquid-solid transition of confined water in silica-based mesopores. J Phys Chem B. 2010;114:4145–50.

    Article  CAS  Google Scholar 

  11. Morishige K, Yasunage H, Matsutani Y. Effect of pore shape on freezing and melting temperature of water. J Phys Chem C. 2010;114:4028–35.

    Article  CAS  Google Scholar 

  12. Bartkowiak MS, Jazdzewska M. Melting behavior of bromobenzene within carbon nanotubes. J Chem Eng Data. 2010;55:4183–9.

    Article  Google Scholar 

  13. Burghaus U. Effect of carbon nanotubes’ crystal structure on adsorption kinetics of small molecules. J Therm Anal Calorim. 2011;106:123–8.

    Article  CAS  Google Scholar 

  14. Sidorchuk VV, Tertykh VA, Klimenko VP, Ragulya AV. Formation and some properties of barium titanate embedded into porous matrices. J Therm Anal Calorim. 2010;101:729–35.

    Article  CAS  Google Scholar 

  15. Czwartos J, Bartkowiak MS, Coasne B, Gubbins KE. Melting of mixtures in silica nanopores. Pure Appl Chem. 2009;81:1953–9.

    Article  CAS  Google Scholar 

  16. Espeau P, Robles L, Cuevas-Diarte MA, Mondieig D, Haget Y. Thermal cycling of molecular alloys and eutectics containing alkanes for energy storage. Mater Res Bull. 1996;31:1219–32.

    Article  CAS  Google Scholar 

  17. Bond Andrew D, Davies John E. n-Decane. Acta Crystallogr E. 2002;58:196–7.

    Article  Google Scholar 

  18. Nyburg SC, Gerson AR. Crystallography of the even n-alkanes: structure of C20H42. Acta Crystallogr B. 1992;48:103–6.

    Article  Google Scholar 

  19. Pan DK, Zhao CD, Zheng ZX. Structure chemistry. 1st ed. Bejing: Higher education press; 1987. p. 608–10.

    Google Scholar 

  20. Dirand M, Bouroukba M, Chevallier V, Petitjean D, Behar E, Ruffier-Meray V. Normal alkanes, multialkane synthetic model mixtures, and real petroleum waxes: crystallographic structures, thermodynamic properties, and crystallization. J Chem Eng Data. 2002;47:115–43.

    Article  CAS  Google Scholar 

  21. Riikonen J, Salonen J, Lehto VP. Utilising thermoporometry to obtain new insights into nanostructured materials, review part 1. J Therm Anal Calorim. 2011;105:811–21.

    Article  CAS  Google Scholar 

  22. Riikonen J, Salonen J, Lehto VP. Utilising thermoporometry to obtain new insights into nanostructured materials, review part 2. J Therm Anal Calorim. 2011;105:823–30.

    Article  CAS  Google Scholar 

  23. Lettow JS, Han YJ, Schmidt-Winkel P, Yang PD, Zhao DY, Stucky GD, Ying JY. Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas. Langmuir. 2000;16:8291–5.

    Article  CAS  Google Scholar 

  24. Finke HL, Gross ME, Waddington G, Huffman HM. Low-temperature thermal data for the nine normal paraffin hydrocarbons from octane to hexadecane. J Am Chem Soc. 1954;76:333–41.

    Article  CAS  Google Scholar 

  25. Parks GS, Moore GE, Renquist ML, Naylor BF, McClaine LA, Fujii PS, Hatton JA. Thermal data on organic compounds. XXV. Some heat capacity, entropy and free energy data for nine hydrocarbons of high molecular weight. J Am Chem Soc. 1949;71:3386–9.

    Article  CAS  Google Scholar 

  26. Courchinoux R, Chanh NB, Haget Y. Use of “shape factors” as an empirical method to determine the actual characteristic temperatures of binary phase diagram by differential scanning calorimetry. Thermochim Acta. 1998;128:45–53.

    Article  Google Scholar 

  27. Ventola L, Calvet T, Cuevas-Diarte MA, Metivaud V, Mondieig D, Oonk H. From concept to application. A new phase change material for thermal protection at −11 °C. Mat Res Innovat. 2002;6:284–90.

    Article  CAS  Google Scholar 

  28. Lettow JS, Han YJ, Schmidt-Winkel P, Yang PD, Zhao DY, Stucky GD, Ying JY. Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas. Langmuir. 2000;16:8291–5.

    Article  CAS  Google Scholar 

  29. Cao L, Man T, Kruk M. Synthesis of ultra-large-pore SBA-15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander. Chem Mater. 2009;21:1144–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank financial support from the Natural Science Found of Shandong Province, China, No. ZR2010BM035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. Lan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, X.Z., Pei, H.R., Yan, X. et al. Phase behavior of dodecane—tetradecane binary system confined in SBA-15. J Therm Anal Calorim 110, 1437–1442 (2012). https://doi.org/10.1007/s10973-011-1996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1996-5

Keywords

Navigation