Skip to main content
Log in

Estimation of Pore Critical Temperature of Nanoconfined Alkanes Using Vapour-Liquid Interfacial Free Energy

  • DYNAMICS OF PHASE TRANSITIONS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Pore critical temperature of nanoconfined alkanes are estimated using vapour–liquid interfacial free energy of finite-size systems at coexistence obtained from grand canonical Monte Carlo simulations. In this investigation, alkanes are considered under nanopore confinement of varying slit pore widths. For a given alkane and pore width the vapour-liquid interfacial free energy at coexistence is computed at different temperatures. The free energy data of coexistence obtained at different temperatures are fitted with second degree polynomial. The temperature corresponding to zero interfacial free energy of phase coexistence is the estimated pore critical temperature of confined alkane under consideration. Estimated pore critical temperatures for studied nanoconfined alkanes have shown nonlinear monotonic trend with slit pore width. This investigation reveals that the pore critical temperature of nanoconfined alkanes estimated using the vapour-liquid interfacial free energy of finite size systems in current work are in good agreement with the available data in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. J. Vrabec, G. K. Kedia, G. Fuchs, et al., Mol. Phys. 104, 1509 (2006).

    Article  CAS  Google Scholar 

  2. S. A. Gupta, H. D. Cochran, and P. T. Cummings, J. Chem. Phys. 107, 10327 (1997).

    Article  CAS  Google Scholar 

  3. S. Bhatia, Langmuir 14, 6231 (1998).

    Article  CAS  Google Scholar 

  4. S. Altwasser, C. Welker, Y. Traa, et al., Microporous Mesoporous Mater. 83, 345 (2005).

    Article  CAS  Google Scholar 

  5. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, et al., Rep. Prog. Phys. 62, 1573 (1999).

    Article  CAS  Google Scholar 

  6. S. O. Travin, O. B. Gromov, D. V. Utrobin, and A. V. Roshchin, Russ. J. Phys. Chem. B 13, 975 (2019).

    Article  CAS  Google Scholar 

  7. Y. K. Tovbin, E. S. Zaitseva, and E. E. Gvozdeva, Russ. J. Phys. Chem. B 13, 427 (2019).

    Article  CAS  Google Scholar 

  8. Y. K. Tovbin, D. V. Eremich, and E. E. Gvozdeva, Russ. J. Phys. Chem. B 1, 178 (2007).

    Article  Google Scholar 

  9. S. K. Singh, A. Sinha, G. Deo, et al., J. Phys. Chem. C 113, 7170 (2009).

    Article  CAS  Google Scholar 

  10. S. K. Singh, A. K. Saha, and J. K. Singh, J. Phys. Chem. B 114, 4283 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. W. D. Machin, Langmuir 10, 1235 (1994).

    Article  CAS  Google Scholar 

  12. A. P. Y. Wong, S. B. Kim, W. I. Goldburg, et al., Phys. Rev. Lett. 70, 954 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. M. Thommes and G. H. Findenegg, Langmuir 10, 4270 (1994).

    Article  CAS  Google Scholar 

  14. K. Morishige and M. Shikimi, J. Chem. Phys. 108, 7821 (1998).

    Article  CAS  Google Scholar 

  15. X. Zhang and W. Wang, Phys. Rev. E 74, 062601 (2006).

    Article  Google Scholar 

  16. R. Pospíšil, A. Malijevský, P. Jech, et al., Mol. Phys. 78, 1461 (1993).

    Article  Google Scholar 

  17. C. Vega, R. D. Kaminsky, and P. A. Monson, J. Chem. Phys. 99, 3003 (1993).

    Article  CAS  Google Scholar 

  18. E. Kierlik, M. L. Rosinberg, G. Tarjus, et al., J. Chem. Phys. 106, 264 (1997).

    Article  CAS  Google Scholar 

  19. D. Henderson, S. Sokolowski, and D. T. Wasan, J. Phys. Chem. B 102, 3009 (1998).

    Article  CAS  Google Scholar 

  20. A. Vishnyakov, E. M. Piotrovskaya, E. N. Brodskaya, et al., Langmuir 17, 4451 (2001).

    Article  CAS  Google Scholar 

  21. H. L. Vörtler, Collect. Czech. Chem. Commun. 73, 518 (2008).

    Article  Google Scholar 

  22. H. L. Vörtler and W. R. Smith, J. Chem. Phys. 112, 5168 (2000).

    Article  Google Scholar 

  23. D. A. Kofke, Mol. Phys. 78, 1331 (1993).

    Article  CAS  Google Scholar 

  24. D. Moller and J. Fischer, Mol. Phys. 69, 463 (1990).

    Article  Google Scholar 

  25. A. Lofti, J. Vrabec, and J. Fischer, Mol. Phys. 76, 1319 (1992).

    Article  Google Scholar 

  26. J. Forsman and C. E. Woodward, Mol. Phys. 90, 637 (1997).

    Article  CAS  Google Scholar 

  27. L. Sarkisov and P. A. Monson, Phys. Rev. E 61, 7231 (2000).

    Article  CAS  Google Scholar 

  28. S. K. Singh, Mol. Simul. 42, 413 (2016).

    Article  CAS  Google Scholar 

  29. S. K. Singh, Mol. Simul. 43, 914 (2017).

    Article  CAS  Google Scholar 

  30. S. K. Singh, S. Khan, S. Jana, et al., Mol. Simul. 37, 350 (2011).

    Article  CAS  Google Scholar 

  31. S. Jana, J. K. Singh, and S. K. Kwak, J. Chem. Phys. 130, 214707 (2009).

    Article  PubMed  Google Scholar 

  32. Y. Liu, A. Z. Panagiotopoulos, and P. G. Debenedetti, J. Chem. Phys. 132, 144107 (2010).

    Article  PubMed  Google Scholar 

  33. S. K. Singh and J. K. Singh, Fluid Phase Equilib. 300, 182 (2011)

    Article  CAS  Google Scholar 

  34. H. L. Vörtler, K. Schäfer, and W. R. Smith, J. Phys. Chem. B 112, 4656 (2008).

    Article  PubMed  Google Scholar 

  35. A. Z. Panagiotopoulos, Mol. Phys. 62, 701 (1987).

    Article  CAS  Google Scholar 

  36. N. B. Wilding, Phys. Rev. E 52, 602 (1995).

    Article  CAS  Google Scholar 

  37. N. B. Wilding and A. D. Bruce, J. Phys.: Condens. Matter 4, 3087 (1992).

    Google Scholar 

  38. J. E. Hunter and W. P. Reinhard, J. Chem. Phys. 103, 8627 (1995).

    Article  CAS  Google Scholar 

  39. J. M. Caillol, J. Chem. Phys. 109, 4885 (1998).

    Article  CAS  Google Scholar 

  40. J. Pérez-Pellitero, P. Ungerer, and A. D. Mackie, Mol. Simul. 33, 777 (2007).

    Article  Google Scholar 

  41. K. Binder, Phys. Rev. Lett. 47, 693 (1981).

    Article  Google Scholar 

  42. W. Rżysko, A. Patrykiejew, S. Sokolowski, et al., J. Chem. Phys. 132, 164702 (2010).

    Article  PubMed  Google Scholar 

  43. W. Rżysko and M. Borowko, Surf. Sci. 605, 1219 (2011).

    Article  Google Scholar 

  44. J. K. Singh, J. Adhikari, and S. K. Kwak, Fluid Phase Equilib. 248, 1 (2006).

    Article  CAS  Google Scholar 

  45. F. Wegner, Phys. Rev. B 5, 4529 (1972).

    Article  Google Scholar 

  46. S. K. Singh, Mol. Simul. 44, 156 (2018).

    Article  CAS  Google Scholar 

  47. A. V. Mokshina and B. N. Galimzyanova, Russ. J. Phys. Chem. B 11, 473 (2017).

    Article  Google Scholar 

  48. J. R. Errington, J. Chem. Phys. 118, 9915 (2003).

    Article  CAS  Google Scholar 

  49. J. R. Errington, Phys. Rev. E 67, 012102 (2003).

    Article  Google Scholar 

  50. A. S. Paluch, V. K. Shen, and J. R. Errington, Ind. Eng. Chem. Res. 47, 4533 (2008).

    Article  CAS  Google Scholar 

  51. B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. J. K. Singh and S. K. Kwak, J. Chem. Phys. 126, 24702 (2007).

    Article  Google Scholar 

  54. J. P. Ryckaert and A. Bellemans, Chem. Phys. Lett. 30, 123 (1975).

    Article  CAS  Google Scholar 

  55. J. R. Errington and A. Z. Panagiotopoulos, J. Phys. Chem. B 103, 6314 (1999)

    Article  CAS  Google Scholar 

  56. P. van der Ploeg and H. J. C. Berendsen, Mol. Phys. 49, 233 (1983).

    Article  CAS  Google Scholar 

  57. B. Smit, S. Karaborni, and J. I. Siepmann, J. Chem. Phys. 102, 2126 (1995).

    Article  CAS  Google Scholar 

  58. F. M. Goujon, A. Boutin, and A. H. Fuchs, J. Chem. Phys. 116, 8106 (2002).

    Article  CAS  Google Scholar 

  59. W. A. Steele, Surf. Sci. 36, 317 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naincy Attri, Sudhir K. Singh Estimation of Pore Critical Temperature of Nanoconfined Alkanes Using Vapour-Liquid Interfacial Free Energy. Russ. J. Phys. Chem. B 15 (Suppl 1), S52–S67 (2021). https://doi.org/10.1134/S1990793121090037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121090037

Keywords:

Navigation