Skip to main content
Log in

Non-isothermal kinetic analysis on the crystallization process in Se–S glassy system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study samples of Se100 − x S x has been prepared by conventional melt-quenching technique in the composition range 5 ≤ x ≤ 20 (at.%). The crystallization process in glassy system was investigated under non-isothermal condition using differential scanning calorimetry (DSC) at 5, 10, 15, and 20 °C/min heating rates (ϕ). The DSC traces have been analyzed in terms of activation energy (ΔE c) and Avrami exponent (n) using different models viz. the Starink, Flynn–Wall–Ozawa, the Friedman–Ozawa, Kissinger–Akahira–Sunose equations. The composition dependence on the glass transition temperature (T g), the crystallization temperature (T c), and the peak temperatures (T p) of the samples were also determined. The analysis shows that the incorporation of sulfur content has a strong influence on the crystallization mechanism for the Se–S glassy system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Starink MJ. The analysis of Al-based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Int Mater Rev. 2004;49:191–226.

    Article  CAS  Google Scholar 

  2. Ozawa T. Temperature control modes in thermal analysis. Pure Appl Chem. 2000;72:2083–99.

    Article  CAS  Google Scholar 

  3. Ahamad MN, Vaish R, Varma KBR. Calorimetric studies on 2TeO2–V2O5 glasses. J Therm Anal Calorim. 2011;105:239–43.

    Article  Google Scholar 

  4. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  5. Liu L, Zhi FW, Chen L. A kinetic study of the non-isothermal crystallization of a Zr-based bulk metallic glass. Chin Phys Lett. 2002;19:1483–6.

    Article  Google Scholar 

  6. Vazquez J, Barreda DGG, Lopez-Alemany PL, Villares P, Jimenez-Garay R. Crystallization of Ge0.08Sb0.15Se0.77 glass studied by DSC. J Noncryst Solids. 2004;345 and 346:142–7.

    Google Scholar 

  7. Wang J, Liu YJ, Tang CY, Liu LB, Zhou HY, Jin ZP. Thermodynamic description of the Au–Ag–Ge ternary system. Thermochim Acta. 2011;512:240–6.

    Article  CAS  Google Scholar 

  8. Surinach S, Baro MD, Clavaguera-Mora MT, Clavaguera N. Kinetic study of isothermal and continuous heating crystallization in GeSe2–GeTe–Sb2Te3 alloy glasses. J Noncryst Solids. 1983;58:209–17.

    Article  CAS  Google Scholar 

  9. Kotkata MF, El-Fouly H, El-Behay AZ, El-Wahab LA. Transport studies of S–Se amorphous semiconductors. Mater Sci Eng. 1983;60:163–71.

    Article  CAS  Google Scholar 

  10. Mahmoud EA. Crystallization kinetics of amorphous S20Se80. Therm Anal Calorim. 1990;36:1481–6.

    Article  CAS  Google Scholar 

  11. Kotkata MF, Ayad FM, El-Mously MK. Photo-effect on crystallization kinetics of amorphous selenium doped with sulphur. J Noncryst Solids. 1979;33:13–22.

    Article  CAS  Google Scholar 

  12. El-Shazly O, Ramadan T, El-Anany N, Mataweh HA, El-Wahidy E. Calorimetric studies of chalcogenide glasses in the system Se–S. Eur Phys J Appl Phys. 2001;13:161–5.

    Article  CAS  Google Scholar 

  13. Dimitrov D, Tzocheva D, Kovacheva D. Calorimetric study of amorphous Sb–Se thin films. Thin Solids Films. 1998;323:79–84.

    Article  CAS  Google Scholar 

  14. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Noncryst Solids. 1986;88:11–34.

    Article  CAS  Google Scholar 

  15. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  16. Kujirai T, Akahira T. Effect of temperature on the deterioration of fibrous insulation materials. Sci Pap Inst Phys Chem Res. 1925;2:223–52.

    CAS  Google Scholar 

  17. Akahira T, Sunose T. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  18. Starink MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;288:97–104.

    Article  CAS  Google Scholar 

  19. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–52.

    Article  CAS  Google Scholar 

  20. Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.

    Article  CAS  Google Scholar 

  21. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  22. Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. J Polym Sci. 1966;B4:323–7.

    Google Scholar 

  23. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci. 1964;C6:183–95.

    Google Scholar 

  24. Ozawa T. Applicability of Friedman plot. J Therm Anal Calorim. 1986;31:547–51.

    Article  CAS  Google Scholar 

  25. Malek J, Cernoskova E, Svejka R, Sestak J, Van der Plaat G. Crystallization kinetics of Ge0.3Sb1.4S2.7 glass. Thermochim Acta. 1996;280–281:353–61.

    Article  Google Scholar 

  26. Afify N. Calorimetric study on the crystallization of a Se0.8Te0.2 chalcogenide glass. J Noncryst Solids. 1992;142:247–59.

    Article  CAS  Google Scholar 

  27. Calventus Y, Surinach S, Baro MD. Crystallization mechanisms of a Se85Te15 glassy alloy. J Phys Condens Matter. 1996;8:927–40.

    Article  CAS  Google Scholar 

  28. Suzuki T, Arai Y, Ohishi Y. Crystallization processes of Li2O–Ga2O3–SiO2–NiO system glasses. J Noncryst Solids. 2007;353:36–43.

    Article  CAS  Google Scholar 

  29. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.

    Article  CAS  Google Scholar 

  30. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  31. Vazquez J, Wagner C, Villares P, Jimenez-Garay R. Glass transition and crystallization kinetics in Sb0.18As0.34Se0.48 glassy alloy by using non-isothermal techniques. J Noncryst Solids. 1998;235–237:548–53.

    Article  Google Scholar 

  32. Hsiao A, McHenry ME, Laughlin DE, Kramer MJ, Ashe C, Ohkubo T. The thermal, magnetic, and structural characterization of the crystallization kinetics of Fe88Zr7B4Cu1, an amorphous soft magnetic ribbon. IEEE Trans Magn. 2002;38:3039–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author M. A. Majeed Khan is thankful to the members of King Abdullah Institute for Nanotechnology for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Majeed Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musahwar, N., Khan, W., Husain, M. et al. Non-isothermal kinetic analysis on the crystallization process in Se–S glassy system. J Therm Anal Calorim 110, 823–829 (2012). https://doi.org/10.1007/s10973-011-1972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1972-0

Keywords

Navigation