Skip to main content
Log in

Thermal behavior of manganese(II) complexes with pyridine-2,3-dicarboxylic acid

Spectroscopic, X-ray, and magnetic studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, we analyzed influence of the type of the syntheses used: hydrothermal and non-hydrothermal on pyridine-2,3-dicarboxylic acid (2,3pydcH2) coordination fashion. Two manganese(II) complexes: [Mn(H2O)3(2,3pydc)] n (1) and [Mn(H2O)6][Mn(2,3pydcH)3]2 (2) were successfully synthesized from the non-hydrothermal reaction system containing organic ligand and different Mn(II) salts. The received complexes have been prepared and characterized by spectroscopic (IR, Raman), structural (X-ray single crystal), and thermogravimetric methods. The results of the crystal study give some evidence that ligand exhibits various topological structures and interesting properties. Pyridine-2,3-dicarboxylic acid acts as monodicarboxylate N,O-chelating anion (complex 2) or a doubly deprotonated three-dentate-N,O,O′ dicarboxylate ion (complex 1). In the [Mn(H2O)6][Mn(2,3pydcH)3]2 the coordination geometry around Mn(1) ion can be considered as being distorted octahedron {MnN3O3}. The Mn(2) cation possesses the same coordination polyhedron (octahedral). We have also analyzed influence of furnace atmosphere on the thermal behavior and the kind of final product. The sample of (1) decomposes in four stages in N2 (368–1073 K) and the final residue is MnO2. The thermogram of (2) exhibits three main distinct decomposition steps (383–973 K). A residue of MnO is remained. In both air and nitrogen atmosphere, Mn(II) complexes (1) and (2) keep unchanged over all steps of decomposition. Only the final residues are different (Mn2O3 are formed). The course of pyrolysis and molecular structure of the complexes lead to the same conclusion about the strength of metal–ligand bonds. On the basis of the above results, it is concluded that the thermal stability of the manganese(II) compounds is slightly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kang Y, Zhang J, Li ZJ, Cheng JK, Yao YG. Syntheses, structures, and photoluminescent properties of four d10 metal-quinolinato coordination polymers with similar rod-like SBUs. Inorg Chim Acta. 2006;359:2201–9.

    Article  CAS  Google Scholar 

  2. Li M, Xiang J, Yuan L, Wu S, Chen S, Sun J. Syntheses, structures and photoluminescence of three novel coordination polymers constructed from dimeric d10 metal units. Cryst Growth Des. 2006;6:2036–40.

    Article  CAS  Google Scholar 

  3. Yang H, Zhang ZH, Guo JH, Lu YC. Hydrothermal and crystal structure of a coordination polymer: [Ni(pda)(H2O)3]n (pda = pyridine-2, 3-dicarboxylate). Chin J Struct Chem. 2006;25:689–93.

    CAS  Google Scholar 

  4. Lush SF, Shen FM. Poly[(μ 4-pyridine-2,3-dicarboxylato)-lead(II)]. Acta Cryst. 2011;Sect. E67:m163–4.

    Google Scholar 

  5. Du ZX, Li JX. Catena-Poly[[[diaquamanganese(II)]-μ3-pyridine-2,3-dicarboxylato-κ4 N,O 2:O 3:O 3′] dihydrate]. Acta Cryst. 2008;Sect. E64:m1295–6.

  6. Gharagozlou M, Langer V, Nemati A. Hexaaquazinc(II) bis[tris(3-carboxypyridine-2-carboxylato)zincate(II)]. Acta Cryst. 2010;Sect. E66:m1606–7.

    Google Scholar 

  7. Barszcz B, Hodorowicz M, Jabłońska-Wawrzycka A, Masternak J, Nitek W, Stadnicka K. Comparative study on Cd(II) and Ca(II) model complexes with pyridine-2,3-dicarboxylic acid: Synthesis, crystal structure and spectroscopic investigation. Polyhedron. 2010;29:1191–200.

    Article  CAS  Google Scholar 

  8. Hao L, Mu C, Kong B. catena-Poly[[[triaquacopper(II)]-μ-pyridine-2,3-dicarboxylato-κ3 N,O 2:O 3] monohydrate]. Acta Cryst. 2008;Sect. E64:m1229.

  9. Jaber F, Cherbonnier F, Faure R. Preparation and crystal structure of tetraaqua-bis(hydrogenopyridine-2,3-(dicarboxylate)bis(pyridine-2,3-dicarboxylate)hexa silver(I) [Ag6(C7H4NO4)2(C7H3NO4]n. Polyhedron. 1996;15:2909–13.

    Article  CAS  Google Scholar 

  10. Patrick BO, Stevens CL, Storr A, Thompson RC. Structural and magnetic properties of three copper(II) pyridine-2, 3-dicarboxylate coordination polymers incorporating the same chain motif. Polyhedron. 2003;22:3025–35.

    Article  CAS  Google Scholar 

  11. Yin H, Liu SX. Copper and zinc complexes with 2,3-pyridinedicarboxylic acid or 2,3-pyrazinedicarboxylic acid; Polymer structures and magnetic properties. J Mol Struct. 2009;918:165–73.

    Article  CAS  Google Scholar 

  12. Han ZB, Ma Y, Sun ZG, You WS. Hydrothermal synthesis, crystal structure and photoluminescent properties of a novel 3-D coordination polymer [Cd2(PYDC)2(H2O)]n (pydc = pyridine-2, 3-dicarboxylate). Inorg Chem Commun. 2006;9:844–7.

    Article  CAS  Google Scholar 

  13. Zhang CX, Ma CB, Wang M, Chen CN. Synthesis and crystal structure of a new three-dimensional coordination polymer: [Mn(2, 3-pdc)(H2O)]n (2, 3-pdc = pyridine-2,3-dicarboxylate). Chin J Struct Chem. 2008;27:1370–4.

    CAS  Google Scholar 

  14. Li LJ, Li Y. Hydrothermal synthesis and crystal structure of a novel 2-D coordination polymer [Mn2(pdc)2(H2O)3] n ∙2n H2O (pdc = pyridine-2,3-dicarboxylate). J Mol Struct. 2004;694:199–203.

    Article  CAS  Google Scholar 

  15. Yen CH, Chen CY, Shiu KB. Hydrothermal synthesis and X-ray structural characterization of manganese, nickel, and cadmium coordination polymers containing 2,3-pyridinedicarboxylate as multidentate ligands. J Chin Chem Soc. 2007;54:903–10.

    CAS  Google Scholar 

  16. Okabe N, Miura J, Shimosaki A. A hydrated cobalt(II) complex of quinolinic acid: trans-[Co(C7H4NO4)2(H2O)2]. Acta Cryst. 1996;Sect. C52:1610–2.

    Google Scholar 

  17. Aghabozorg H, Sadr-khanlou E, Soleimannejad J, Adams H. Diaqua bis(3-carboxypyridine-2-carboxylato-κ2 N,O 2)zinc(II). Acta Cryst. 2007;Sect. E63:m1769.

  18. Xiang JF, Li M, Wu SM, Yuan LJ, Sun JT. Diaqua bis(pyridine-2,3-dicarboxylato)copper(II). Acta Cryst. 2006;Sect. E62:m1122–3.

    Google Scholar 

  19. Singh WM, Jali BR, Das B, Baruah JB. Synthesis, characterization, and reactivity of zinc carboxylate complexes of 2,3-pyridine dicarboxylic acid and (3-oxo-2, 3-dihydro-benzo[1, 4]oxazin-4-yl)acetic acid. Inorg Chim Acta. 2011;372:37–41.

    Article  Google Scholar 

  20. Turner DR, Batten SR. catena-Poly[[copper(II)-bios(μ-3-carboxypyridine-2-carboxylato)-κ3 N,O 2:O 33 O 3:N,O 2] methanol disolvate]. Acta Cryst. 2007;Sect. E63:m452–4.

  21. Das B, Boudalis AK, Baruah JB. Selective adenine/cytosine cations in one-dimensional coordination polymers of manganese (II) and copper (II) 2,3-pyridinedicarboxylates. Inorg Chem Commun. 2010;13:1244–8.

    Article  CAS  Google Scholar 

  22. Nonius COLLECT. Delft: Nonius BV; 1997–2000.

  23. Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation. Methods Enzymol. 1997;276:307.

    Article  CAS  Google Scholar 

  24. Altomare A, Cascarano G, Giacovazzo C, Guagliardi C, Burla MC, Palidori G, Camalli M. SIR92-a program for automatic solution of crystal structures by direct methods. J Appl Cryst. 1994;27:435.

    Google Scholar 

  25. Scheldrick GM. SHELXL-97, Program for Crystal Structure Refinement. Germany: University of Göttingen; 1997.

    Google Scholar 

  26. Brandenburg K, Putz H. Diamond-crystal and molecular structure visualization crystal impact. Rathausgasse 30, version 3.1f. Bonn: GbR; 1997–2000.

  27. Faruggia L. WinGX suite for small-molecule single-crystal crystallography. J Appl Cryst. 1999;32:837–8.

    Article  Google Scholar 

  28. Deacon GB, Phillips RJ. Relationship between the carbon-oxygen stretching frequencies of carboxylate and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.

    Article  CAS  Google Scholar 

  29. Barszcz B, Masternak J, Surga W. Thermal properties of Ca(II) and Cd(II) complexes of pyridinedicarboxylates. Correlation with crystal structures. J Therm Anal Calorim. 2010;101:633–9.

    Article  CAS  Google Scholar 

  30. Nakamoto K. Infrared spectra of inorganic and coordination compounds. 6th ed. Hoboken: Wiley; 2009.

    Google Scholar 

  31. Robert V, Lemercier G. A combined experimental and theoretical study of carboxylate coordination modes: A structural probe. J Am Chem Soc. 2006;128:1183–7.

    Article  CAS  Google Scholar 

  32. Brzyska W, Jusko IA. J Therm Anal Calorim. 2004;76:823–8.

    Article  CAS  Google Scholar 

  33. Vairam S, Premkumor T, Govindarajan S. J Therm Anal Calorim. 2010;101:979–85.

    Article  CAS  Google Scholar 

  34. Suzuki Y, Muraishi K, Ito H. Thermal decomposition of manganese(II) dicarboxylate anhydrides in various atmospheres. Thermochim Acta. 1995;258:231–41.

    Article  CAS  Google Scholar 

  35. Yeşilel OZ, Ölmez H. Spectrothermal studies of 1,10-phenantroline complexes of Co(II), Ni(II), Cu(II) and Cd(II) orotates. J Therm Anal Calorim. 2006;86:211–6.

    Article  Google Scholar 

  36. Çolak AT, Akduman D, Yeşilel OZ, Büyükgüngör O. Pyridine-2,3-dicarboxylic acid complexes of nickel(II) with 2,2′-bipyridine and 1,10-phenantroline coligands; syntheses, crystal structures, spectroscopic and thermal studies. Transition Met Chem. 2009;34:861–8.

    Article  Google Scholar 

  37. Rzączyńska Z, Kula A, Sienkiewicz-Gromiuk J, Szybiak A. Synthesis, spectroscopic and thermal studies of 2,3-naphthalenedicarboxylates of rare earth elements. J Therm Anal Calorim. 2011;103:275–81.

    Article  Google Scholar 

  38. Powder Diffraction File, JCPDS: ICDD, 1601 Park Lane, Swarthmore, PA 19081, Data 1990, File No 24-735.

  39. Rzączyńska Z, Ostasz A, Pikus S. Thermal properties of rare earth elements complexes with 1,3,5-benzenetricarboxylic acid. J Therm Anal Calorim. 2005;82:347–51.

    Article  Google Scholar 

  40. Ferenc W, Walków-Dziewulska A. Comparison of some properties of 2,3- and 3,5-dimethoxybenzoates of light lanthanides. J Therm Anal Calorim. 2003;74:511–9.

    Article  CAS  Google Scholar 

  41. Powder Diffraction File, JCPDS: ICDD, 1601 Park Lane, Swarthmore, PA 19081, Data 1990, File No 7-230.

  42. Powder Diffraction File, JCPDS: ICDD, 1601 Park Lane, Swarthmore, PA 19081, Data 1990, File No 6-540.

Download references

Acknowledgements

The authors are grateful to Dr. Wiesław Surga and MSc Joanna Masternak for help during the thermal work and XRD investigations. European Union Project 8.2.1/POKL/2009 supported this work (M. Zienkiewicz) partly. The opportunity of making the Raman spectra in the Structural Laboratory of the Jan Kochanowski University is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Jabłońska–Wawrzycka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabłońska–Wawrzycka, A., Zienkiewicz, M., Hodorowicz, M. et al. Thermal behavior of manganese(II) complexes with pyridine-2,3-dicarboxylic acid. J Therm Anal Calorim 110, 1367–1376 (2012). https://doi.org/10.1007/s10973-011-1971-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1971-1

Keywords

Navigation