Skip to main content
Log in

Synthesis of nanocrystalline nickel ferrite by thermal decomposition of organic precursors

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nickel ferrite powders were synthesized by thermal decomposition of the precursors obtained in the redox reaction between the mixture of Ni(NO3)2·6H2O and Fe(NO3)3·9H2O with polyalcohol: 1,4-butanediol, polyvinyl alcohol and also with their mixture. During this reaction the primary C–OH groups were oxidized at –COOH, while secondary C–OH groups at C=O groups. The carboxylic groups formed coordinate to the present Ni(II) and Fe(III) cations leading to carboxylate type compounds, further used as precursors for NiFe2O4. These precursors were characterized by thermal analysis and FT-IR spectrometry. All precursors thermally decomposed up to 350 °C leading to nickel ferrite weakly crystallized. By annealing at higher temperatures, nanocrystalline nickel ferrite powders were obtained, as resulted from XRD. SEM images have evidenced the formation of nanoparticulate powders; these powders present magnetic properties characteristic to the oxidic system formed by magnetic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

1,4BG:

1,4-butanediol

PVA:

Polyvinyl alcohol

References

  1. Liu XM, Yang G, Fu SY. Mass synthesis of nanocrystalline spinel ferrites by a polymer-pyrolysis route. Mat Sci Eng C. 2007;27:750–5.

    Article  CAS  Google Scholar 

  2. Bucko MM, Haberko K. Hydrothermal synthesis of nickel ferrite powders, their properties and sintering. J Eur Ceram Soc. 2007;27:723–7.

    Article  CAS  Google Scholar 

  3. Wang L, Ren J, Wang Y, Liu X, Wang Y. Controlled synthesis of magnetic spinel-type nickel ferrite nanoparticles by the interface reaction and hydrothermal crystallization. J Alloy Compd. 2010;490:656–60.

    Article  CAS  Google Scholar 

  4. Zhao DL, Zeng XW, Xia QS, Tang JT. Preparation and coercivity and saturation magnetization dependence of inductive heating property of Fe3O4 nanoparticles in an alternating current magnetic field for localized hyperthermia. J. Alloys Compd. 2009;469:215–8.

    Article  CAS  Google Scholar 

  5. Gill CS, Long W, Jones CW. Magnetic nanoparticle polymer brush catalysts: alternative hybrid organic/inorganic structures to obtain high, local catalyst loadings for use in organic transformations. Catal Lett. 2009;131:425–31.

    Article  CAS  Google Scholar 

  6. Gadkari AB, Shinde TJ, Vasambekar PN. Ferrite gas sensors. (IEEE) Sens J. 2011;11:849–61.

  7. Boonchom B, Maensiri S. Non-isothermal decomposition kinetics of NiFe2O4 nanoparticles synthesized using egg white solution route. J Therm Anal Calorim. 2009;97:879–84.

    Article  CAS  Google Scholar 

  8. Popescu SA, Vlazan P, Notingher PV, Novaconi S, Grozescu I, Bucur A, Sfirloaga P. Synthesis of Ni ferrite powders by coprecipitation and hydrothermal methods. J Optoelectron Adv Mater. 2011;13:260–2.

    CAS  Google Scholar 

  9. Shafi KVPM, Ulman A, Yan X, Yang NL, Estourne C, White H, Rafailovich M. Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir. 2001;17:5093–7.

    Article  CAS  Google Scholar 

  10. Bensebaa F, Zavaliche F, L’Ecuyer P, Cochrane RW, Veres TJ. Microwave synthesis and characterization of co-ferrite nanoparticles. J Colloid Interface Sci. 2004;277:104.

    Article  CAS  Google Scholar 

  11. Lee Y, Lee J, Bae CJ, Park JG, Noh HJ, Park JH, Hyeon T. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater. 2005;15:503.

    Article  CAS  Google Scholar 

  12. Gingasu D, Mindru I, Patron L, Stoleriu S. Synthesis of lithium ferrites from polymetallic carboxylates. J Serb Chem Soc. 2008;73:979–88.

    Article  CAS  Google Scholar 

  13. Mooney KE, Nelson JA, Wagner MJ. Superparamagnetic cobalt ferrite nanocrystals synthesized by alkalide reduction. Chem Mater. 2004;16:3155.

    Article  CAS  Google Scholar 

  14. Liu XM, Fu SY, Huang J. Synthesis and magnetic characterization of novel CoFe2O4–BiFeO3 nanocomposites. Mater Sci Eng B. 2005;121:255–60.

    Article  Google Scholar 

  15. Misra RDK, Kale A, Kooi BJ, Hosson JTM. Some aspects of nanocrystalline nickel and zinc ferrites processed using microemulsion technique. Mater Sci Technol. 2003;19:1617–21.

    Article  CAS  Google Scholar 

  16. Liu Xian-Ming, Fu SY, Xiao HM, Huang CJ. Synthesis of nanocrystalline spinel CoFe2O4 via a polymer-pyrolysis route. Phys B. 2005;370:14–21.

    Article  CAS  Google Scholar 

  17. Manova E, Tsoncheva T, Paneva D, Rehspringer JL, Tenchev K, Mitov I, Petrov L. Synthesis characterization and catalytic properties of nanodimensional nickel ferrite/silica composites. Appl Catal A: General. 2007;317:34–42.

    Article  CAS  Google Scholar 

  18. Saha SK, Pathak A, Pramanic P. Low temperature preparation of fine particles of mixed oxides. J Mater Sci Lett. 1995;14:35–7.

    Article  CAS  Google Scholar 

  19. Ari M, Miller KJ, Marinkovic BA, Jardim PM, Avillez R, Rizzo F, White MA. Rapid synthesis of the low thermal expansion phase of Al2Mo3O12 via a sol–gel method using polyvinyl alcohol. J Sol-Gel Sci Technol. doi:10.1007/s10971-010-2364-9.

  20. Sen A, Pramanik P. Preparation of nano-sized calcium, magnesium and zinc chromite powder through metalo-organic precursor solution. J Mater Synth Process. 2002;10:107–11.

    Article  CAS  Google Scholar 

  21. Stefănescu M, Stoia M, Stefănescu O, Barvinschi P. Obtaining of Ni0.65Zn0.35Fe2O4 nanoparticles at low temperature starting from metallic nitrates and polyols. J Therm Anal Calorim. 2010;99:459–64.

    Article  Google Scholar 

  22. Ştefănescu M, Stoia M, Dippong T, Ştefănescu O, Barvinschi P. Preparation of Co x Fe3−x O4 oxydic system starting from metal nitrates and propanediol. Acta Chim Slov. 2009;56:379–85.

    Google Scholar 

  23. Ştefănescu M, Ştefănescu O, Stoia M, Lazau C. Thermal decomposition of some metal-organic precursors Fe2O3 nanoparticles. J Therm Anal Calorim. 2007;881:27–32.

    Google Scholar 

  24. Gonsalves LR, Mojumdar SC, Verenkar VMS. Synthesis of cobalt nickel ferrite nanoparticles via autocatalytic decomposition of the precursor. J Therm Anal Calorim. 2010;100:789–92.

    Article  CAS  Google Scholar 

  25. Joint Committee on Powder Diffraction Standards-International Center for Diffraction Data. Swarthmore, 1993.

  26. Huo J, Wei M. Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Mater Lett. 2009;63:1183–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the strategic grant POSDRU/21/1.5/G/13798 inside POSDRU Romania 2007–2013, co-financed by the European Social Fund – Investing in People and by the strategic grant POSDRU/88/1.5/S/50783, Project ID 50783 (2009), co-financed by the European Social Fund – Investing in People, within the Sectoral Operational Programme Human Resources Development 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Stoia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoia, M., Barvinschi, P., Tudoran, L.B. et al. Synthesis of nanocrystalline nickel ferrite by thermal decomposition of organic precursors. J Therm Anal Calorim 108, 1033–1039 (2012). https://doi.org/10.1007/s10973-011-1903-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1903-0

Keywords

Navigation