Skip to main content
Log in

Thermal decomposition of Prussian blue under inert atmosphere

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of Prussian blue (iron(III) hexacyanoferrate) under inert atmosphere of argon was monitored by thermal analysis from room temperature up to 1000 °C. X-ray powder diffraction and 57Fe Mössbauer spectroscopy were the techniques used for phase identification before and after sample heating. The decomposition reaction is based on a successive release of cyanide groups from the Prussian blue structure. Three principal stages were observed including dehydration, change of crystal structure of Prussian blue, and its decomposition. At 400 °C, a monoclinic Prussian blue analogue was identified, while at higher temperatures the formation of various polymorphs of iron carbides was observed, including an orthorhombic Fe2C. Increase in the temperature above 700 °C induced decomposition of primarily formed Fe7C3 and Fe2C iron carbides into cementite, metallic iron, and graphite. The overall decomposition reaction can be expressed as follows: Fe4[Fe(CN)6]3·4H2O → 4Fe + Fe3C + 7C + 5(CN)2 + 4N2 + 4H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buser HJ, Schwarzenbach D, Petter W, Ludi A. The crystal structure of Prussian blue: Fe4[Fe(CN)6]3·xH2O. Inorg Chem. 1977;163:2704–9.

    Article  Google Scholar 

  2. Ito A, Suenaga M, Ono K. Mössbauer study of soluble Prussian blue, insoluble Prussian blue, and Turnbull’s blue. J Chem Phys. 1968;48:3597–9.

    Article  CAS  Google Scholar 

  3. Wilde RE, Ghosh SN, Marshall BJ. The Prussian blues. Inorg Chem. 1970;9:2512–6.

    Article  CAS  Google Scholar 

  4. Weiser HB, Milligan WO, Bates JB. X-ray diffraction studies on heavy-metal iron-cyanides. J Phys Chem. 1942;46:99–111.

    Article  CAS  Google Scholar 

  5. Allen JF, Bonnette AK. Thermal decomposition of Prussian blue: isotopic labeling with Mössbauer-inactive Fe-56. J Inorg Nucl Chem. 1974;36:1011–6.

    Article  CAS  Google Scholar 

  6. Inoue H, Nakazawa T, Mitsuhashi T, Shirai T, Fluck E. Characterization of Prussian blue and its thermal decomposition products. Hyperfine Interact. 1989;46:725–31.

    Article  Google Scholar 

  7. Ludi A, Güdel HU. Structural chemistry of polynuclear transition metal cyanides. Struct Bond. 1973;14:1–21.

    Article  CAS  Google Scholar 

  8. Herren F, Fischer P, Ludi A, Hälg W. Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3·xH2O. Location of water molecules and long-range magnetic order. Inorg Chem. 1980;19:956–9.

    Article  CAS  Google Scholar 

  9. Vaucher S, Li M, Mann S. Synthesis of Prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions. Angew Chem Int Ed. 2000;39:1793–6.

    Article  CAS  Google Scholar 

  10. Fiorito PA, Gonçales VR, Ponzio EA, Córdoba de Torresi SI. Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices. Chem Commun. 2005;3:366–8.

    Article  Google Scholar 

  11. Shen X, Wu S, Liu Y, Wang K, Xu Z, Lu W. Morphology synthesis and properties of well-defined Prussian blue nanocrystals by a facile solution approach. J Colloid Interface Sci. 2009;329:188–95.

    Article  CAS  Google Scholar 

  12. Zhou PH, Xue DS. Finite-size effect on magnetic properties in Prussian blue nanowire arrays. J Appl Phys. 2004;96:610–4.

    Article  CAS  Google Scholar 

  13. Karyakin AA, Karyakina EE. Electroanalytical applications of Prussian blue and its analogs. Russ Chem Bull Int Ed. 2001;50:1811–7.

    Article  CAS  Google Scholar 

  14. Koncki R. Chemical sensors and biosensors based on Prussian blues. Crit Rev Anal Chem. 2002;32:79–96.

    Article  CAS  Google Scholar 

  15. Puganova EA, Karyakin AA. New materials based on nanostructured Prussian blue for development of hydrogen peroxide sensors. Sensor Actuator B. 2005;109:167–70.

    Article  Google Scholar 

  16. Rasmussen PG, Meyers EA. An investigation of Prussian blue analogues by Mössbauer spectroscopy and magnetic susceptibility. Polyhedron. 1984;3:183–90.

    Article  CAS  Google Scholar 

  17. Verdaguer M, Girolami G. Magnetic Prussian blue analogs. In: Miller JS, Drillon M, editors. Magnetism: molecules to materials V. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2005. p. 283–346.

    Chapter  Google Scholar 

  18. Cosgrove JG, Collins RL, Murty DS. Preparation of ferrous ferricyanide (not Turnbull’s blue). J Am Chem Soc. 1973;95:1083–6.

    Article  CAS  Google Scholar 

  19. Zboril R, Machala L, Mashlan M, Sharma V. Iron(III) oxide nanoparticles in the thermally induced oxidative decomposition of Prussian blue, Fe4[Fe(CN)6]3. Cryst Growth Des. 2004;4:1317–25.

    Article  CAS  Google Scholar 

  20. De Marco D, Marchese A, Migliardo P, Bellomo A. Thermal analysis of some cyano compounds. J Therm Anal Calorim. 1987;32:927–37.

    Article  Google Scholar 

  21. De Marco D. Thermal analysis of some cyano compounds. Part II. Thermal behaviour of mixed KLnFe(CN)6·4H2O (Ln = La(III), Ce(III), Nd(III)). Thermochim Acta. 1988;128:127–40.

    Article  Google Scholar 

  22. De Marco D. Thermal analysis of some cyano compounds. Note III. The thermal behaviour of Na4Fe(CN)6·10H2O, K2Cu3[Fe(CN)6]2·xH2O, K2Zn3[Fe(CN)6]2·xH2O and Pb2Fe(CN)6. J Therm Anal Calorim. 1989;35:2279–90.

    Article  Google Scholar 

  23. De Marco D, Linert W. Thermal analysis of some cyano compounds. Part IV. The thermal behaviour of LnFe3+(CN)6·nH2O (La = La(III), Ce(III), Pr(III), Nd(III)). Thermochim Acta. 1991;175:249–61.

    Article  Google Scholar 

  24. Brar AS, Sandhu HS, Sandhu SS. Thermal decomposition of hexahydrato thorium(IV) ferrocyanide. Thermochim Acta. 1980;41:253–6.

    Article  CAS  Google Scholar 

  25. Lehto J, Haukka S, Koskinen P, Blomberg M. Thermal decomposition of potassium cobalt hexacyanoferrates(II). Thermochim Acta. 1990;160:343–7.

    Article  CAS  Google Scholar 

  26. Navarro MC, Lagarrigue MC, De Paoli JM, Carbonio RE, Gómez MI. A new method of synthesis of BiFeO3 prepared by thermal decomposition of Bi[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2010;102:655–60.

    Article  CAS  Google Scholar 

  27. Gil DM, Navarro MC, Lagarrigue MC, Guimpel J, Carbonio RE, Gómez MI. Synthesis and structural characterization of perovskite YFeO3 by thermal decomposition of a cyano complex precursor, Y[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2011;103:889–96.

    Article  CAS  Google Scholar 

  28. Gallagher PK, Prescott B. Further studies of the thermal decomposition of europium hexacyanoferrate(III) and ammonium europium hexacyanoferrate(II). Inorg Chem. 1970;9:2510–2.

    Article  CAS  Google Scholar 

  29. Žák T, Jirásková Y. CONFIT: Mössbauer spectra fitting program. Surf Interface Anal. 2006;38:710–4.

    Article  Google Scholar 

  30. Nomura K, Takeda M, Iiyama T, Sakai H. Mössbauer studies of jarosite, mikasaite and Yapavaiite, and implication to their Martian counterparts. Hyperfine Interact. 2005;166:657–64.

    Article  CAS  Google Scholar 

  31. Rodriguez-Carvajal J. An introduction to the program Fullprof 2000 (version July 2001). http://www.ill.eu/sites/fullprof/index.html.

  32. Reguera E, Fernández-Bertrán J. Effect of the water of crystallization on the Mössbauer spectra of hexacyanoferrates (II and III). Hyperfine Interact. 1994;88:49–58.

    Article  CAS  Google Scholar 

  33. Reguera E, Fernández-Bertrán J, Balmaseda J. The existence of ferrous ferricyanide. Transit Metal Chem. 1999;24:648–54.

    Article  CAS  Google Scholar 

  34. Reguera E, Yee-Madeira H, Fernández-Bertran J, Nuñez L. Mössbauer spectra of ferrous salts of transition metal cyano complexes. A survey. Transit Metal Chem. 1999;24:163–7.

    Article  CAS  Google Scholar 

  35. Herbstein FH, Snyman JA. Identification of Eckstrom-Adcock iron carbide as Fe7C3. Inorg Chem. 1964;3:894–6.

    Article  CAS  Google Scholar 

  36. Lodya JAL, Gericke H, Ngubane J, Dlamini TH. Synthesis of Fe-carbides species by reactive milling. Hyperfine Interact. 2009;190:37–42.

    Article  CAS  Google Scholar 

  37. Yamada Y, Yoshida H, Kouno K, Kobayashi Y. Iron carbide films produced by laser deposition. J Phys Conf Ser. 2010;217:012096.

    Article  Google Scholar 

  38. Fang CM, van Huis MA, Zandbergen HW. Structure and stability of Fe2C phases from density-functional theory calculations. Scr Mater. 2010;63:418–21.

    Article  CAS  Google Scholar 

  39. Barton GH, Gale B. The Structure of a pseudo-hexagonal iron carbide. Acta Crystallogr. 1964;17:1460–2.

    Article  CAS  Google Scholar 

  40. Niemantsverdriet JW, van der Kraan AM, van Dijk WL, van der Baan HS. Behavior of metallic iron catalysis during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements. J Phys Chem. 1980;84:3363–70.

    Article  CAS  Google Scholar 

  41. Amelse JA, Grynkewich G, Butt JB, Schwartz LH. Mössbauer spectroscopic study of passivated small particles of iron and iron carbide. J Phys Chem. 1981;85:2484–8.

    Article  CAS  Google Scholar 

  42. Le Caër G, Dubois JM, Pijolar M, Perrichon V, Busslère P. Characterization by Mössbauer spectroscopy of iron carbides formed by Fischer-Tropsch synthesis. J Phys Chem. 1982;86:4799–808.

    Article  Google Scholar 

  43. Ron M. Iron-carbon and iron-nitrogen systems. In: Cohen RL, editor. Applications of Mössbauer spectroscopy, vol II. New York: Academic Press; 1980. p. 329–92.

    Google Scholar 

  44. Eckstrom HC, Adcock WC. A new iron carbide in hydrocarbon synthesis catalysis. J Am Chem Soc. 1950;72:1042–3.

    Article  CAS  Google Scholar 

  45. Cohn EM, Hofer LJE. Mode of transition from Hägg iron carbide to cementite. J Am Chem Soc. 1950;72:4662–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Operational Program Research and Development for Innovations—European Regional Development Fund (CZ.1.05/2.1.00/03.0058), the internal IGA grants of Palacky University (PrF_2010_010, PrF_2011_013), the projects of the Ministry of Education of the Czech Republic (1M6198959201 and MSM6198959218), and the project of the Academy of Sciences of the Czech Republic (KAN115600801). The authors would like to thank to Jan Filip for XRD measurements, Martin Heřmánek for TG measurements, Jana Ševčíkova for Mössbauer measurements, Oldřich Schneeweiss for his comments on carbide phases, and Jiří Tuček for language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Machala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aparicio, C., Machala, L. & Marusak, Z. Thermal decomposition of Prussian blue under inert atmosphere. J Therm Anal Calorim 110, 661–669 (2012). https://doi.org/10.1007/s10973-011-1890-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1890-1

Keywords

Navigation