Skip to main content
Log in

Study on thermal transformation of CuHPO4·H2O obtained by acetone-mediated synthesis at ambient temperature

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Copper hydrogenphosphate monohydrate, CuHPO4·H2O, was synthesized for the first time through simple and rapid method using the mixing of copper carbonate and phosphoric acid in acetone medium at ambient temperature. The obtained CuHPO4·H2O decomposed in three stages via dehydration and deprotonated hydrogenphosphate reactions, revealed by TG/DTG and DSC techniques. The kinetic triplet parameters (E a, A, and n) and thermodynamic functions (ΔH*, ΔG*, and ΔS*) for the first two decomposed steps were calculated from DSC data. All the obtained functions indicate that the deprotonated HPO4 2− reaction for the second step occurs at a higher energy pathway than the dehydration reaction for the first step. The calculated wavenumbers based on DSC peaks were comparable with FTIR results, which support the breaking bonds of OH (H2O) and P-OH (HPO4 2−) according to decomposed mechanisms. All the calculated results are consistent and in good agreement with CuHPO4·H2O’s thermal transformation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Averbuch-Pouchat MT, Durif A. Topics in phosphate chemistry. 1st ed. Singapore: World Scientific; 1996.

    Book  Google Scholar 

  2. Xu J, Zhang J, Qian J. Hydrothermal synthesis of potassium copper phosphate hydrate and ludjibaite microcrystals. J Alloys Compd. 2010;494:319–22.

    Article  CAS  Google Scholar 

  3. Onoda H, Okumoto K-I, Nakahira A, Tanaka I. Mechanochemical effects on the synthesis of copper orthophosphate and cyclo-tetraphosphate bulks by the hydrothermal hot pressing method. Materials. 2009;2:1–9.

    Article  CAS  Google Scholar 

  4. Galkova TN, Pacewska B, Samuskevich VV, Pysiak J, Shulga NV. Thermal transformations of CuNH4PO4·H2O. J Therm Anal Calorim. 2000;60:1019–32.

    Article  CAS  Google Scholar 

  5. Frost RL, Kloprogge T, Williams PA, Martens W, Johnson TE, Leverett P. Vibrational spectroscopy of the basic copper phosphate minerals: pseudomalachite, ludjibaite and reichenbachite. Spectrochim Acta A. 2002;58:2861–8.

    Article  Google Scholar 

  6. Lucheva B, Tsonev TS, Petkov R. Method for obtaining of copper-phosphorus alloys. J Univ Chem Technol Metall. 2005;40:235–8.

    CAS  Google Scholar 

  7. Onoda H, Okumoto K-I, Tanaka I. Mechanochemical reforming of powder and acidic properties of copper cyclo-tetraphosphates. Mater Chem Phys. 2008;107:339–43.

    Article  CAS  Google Scholar 

  8. Bamberger CE, Specht ED, Anovitz LM. Crystalline copper phosphates: synthesis and thermal stability. J Am Ceram Soc. 1997;80(12):3133–8.

    Article  CAS  Google Scholar 

  9. Robertson BE, Calvo C. The crystal structure and phase transformation of α-Cu2P2O7. Acta Crystallogr. 1967;22:665–72.

    Article  CAS  Google Scholar 

  10. Effenberger H. Structural refinement of low-temperature copper(II) pyrophosphate. Acta Crystallogr. 1990;C46:691–2.

    CAS  Google Scholar 

  11. Navrotsky SN, Le A, Pralong V. Energetics of copper diphosphates—Cu2P2O7 and Cu3(P2O6OH)2. J Solid State Sci. 2008; 10:761–7.

    Google Scholar 

  12. Viter VN, Nagornyi PG. Synthesis and characterization of (Cu1–xZnx)3(PO4)2·H2O (0 < x ≤ 0.19) solid solutions. Inorg Mater. 2006;42(4):406–9.

    Article  CAS  Google Scholar 

  13. Bamberger CE, Specht ED, Anovitz LM. Compounds and solid solutions of cobalt, copper phosphates. J Am Ceram Soc. 1998;81(11):2799–804.

    Article  CAS  Google Scholar 

  14. Kopilevich VA, Zhilyak ID, Voitenko LV. Synthesis and thermal transformations of hydrated ammonium copper(II) zinc diphosphate. Russ J Appl Chem. 2005;78(12):1917–20.

    Article  CAS  Google Scholar 

  15. Prokopchuk NN, Kopilevich VA, Voitenko LV. Preparation of double nickel(II) cobalt(II) phosphates with controlled cationic composition. Russ J Appl Chem. 2008;81(3):386–91.

    Article  CAS  Google Scholar 

  16. Bhatgadde LG, Mahapatra S. Preparation and optimization of pyrophosphate bath for copper electroplating of microwave components. Def Sci J. 1988;38(2):119–23.

    CAS  Google Scholar 

  17. da Silva Filho EC, da Silva OG, da Fonseca MG, Arakaki LNH, Airoldi C. Synthesis and thermal characterization of copper and calcium mixed phosphates. J Therm Anal Calorim. 2007;87(3):775–8.

    Article  Google Scholar 

  18. Podgornova L, Kuznetsov P, Yu I, Gavrilova SV. On the zinc and copper dissolution in phosphate solutions. Prot Met. 2003;39(3):217–21.

    Article  CAS  Google Scholar 

  19. Ciopec M, Muntean C, Negrea A, Lupa L, Negrea P, Barvinschi P. Synthesis and thermal behavior of double copper and potassium pyrophosphate. Thermochim Acta. 2009;488:10–6.

    Article  CAS  Google Scholar 

  20. Brandová D, Trojan M, Arnold M, Paulik F, Paulik J. Mechanism of dehydration and condensation of CuHPO4·H2O. J Therm Anal Calorim. 1988;34:1449–54.

    Article  Google Scholar 

  21. Cullity BD. Elements of X-ray diffraction. 2nd ed. Massachusetts: Addison-Wesley; 1977.

    Google Scholar 

  22. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  23. Anilkumar GM, Sung YM. Phase formation kinetics of nanoparticle-seeded strontium bismuth tantalate powder. J Mater Sci. 2003;38:1391–6.

    Article  CAS  Google Scholar 

  24. Zhao MS, Song XP. Synthesizing kinetics and characteristics for spinel LiMn2O4 with the precursor using as lithium-ion battery cathode material. J Power Sources. 2007;164:822–8.

    Article  CAS  Google Scholar 

  25. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li C-R, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  26. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  27. Zhang LM, Chen D, Wu J. Leucite crystallization kinetics with kalsilite as a transition phase. Mater Lett. 2007;61:2978–81.

    Article  CAS  Google Scholar 

  28. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dehydrate. J Chem Eng Data. 2008;53:1533–8.

    Article  CAS  Google Scholar 

  29. Cordes HM. Preexponential factors for solid-state thermal decomposition. J Phys Chem. 1968;72:2185–9.

    Article  CAS  Google Scholar 

  30. Young D. Decomposition of solids. Oxford: Pergamon Press; 1966.

    Google Scholar 

  31. Turmanova SCh, Genieva SD, Dimitrova AS, Vlaev LT. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett. 2008;2:133–46.

    Article  CAS  Google Scholar 

  32. Herzberg G. Molekülspektren und Molekülstruktur. I. Zweiatomige Moleküle. Dresden: Steinkopff; 1939.

    Google Scholar 

  33. Colthup NB, Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. New York: Academic Press; 1964.

  34. Vlase T, Vlase G, Doca M, Doca N. Specificity of decomposition of solids in non-isothermal conditions. J Therm Anal Calorim. 2003;72:597–604.

    Article  CAS  Google Scholar 

  35. Bertol C, Cruz A, Stulzer H, Murakami F, Silva M. Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2010;102:187–92.

    Article  CAS  Google Scholar 

  36. Navarro M, Lagarrigue M, De J, Carbonio R, Gómez M. A new method of synthesis of BiFeO3 prepared by thermal decomposition of Bi[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2010;102:655–60.

    Article  CAS  Google Scholar 

  37. Boonchom B, Danvirutai C. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O. J Therm Anal Calorim. 2009;98:771–7.

    Article  CAS  Google Scholar 

  38. Mansurova A, Gulyaeva R, Chumarev V, Mar’evich V. Thermochemical properties of MnNb2O6. J Therm Anal Calorim. 2010;101:45–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work financially supported by the National Nanotechnology Center (NANOTEC) NSTDA, Ministry of Science and Technology, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banjong Boonchom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baitahe, R., Vittayakorn, N. & Boonchom, B. Study on thermal transformation of CuHPO4·H2O obtained by acetone-mediated synthesis at ambient temperature. J Therm Anal Calorim 110, 625–632 (2012). https://doi.org/10.1007/s10973-011-1832-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1832-y

Keywords

Navigation