Skip to main content
Log in

The use of solution microcalorimetry to evaluate chemically modified fish scales as a viable adsorbent for heavy metals

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Here, we report for the first time the direct and simultaneous determination of kinetic and energetic parameters of Cr(VI) sorption on chemically modified fish scales (GA-scale) using solution microcalorimetry. Characterization has suggested that electrostatic interactions between scales collagen positive charges and chromate negative charges constitute the majority of the interactions. The microcalorimetric kinetic data of Cr(VI) sorption on GA-scale were successful adjusted to a three-parameter exponential function. The enthalpies of Cr(VI) sorption on GA-scale are highly exothermic (from −226.43 to −183.79 kJ mol−1), and Cr(VI) interaction energies decrease as initial Cr(VI) in solution increases. The kinetic and thermodynamic from solution microcalorimetry results suggest that the interactions GA-scale/Cr(VI) occur mainly by surface reactions. The maximum adsorption capacity of GA-scale for Cr(VI) was found to be comparable with some commercial adsorbent samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miretzky P, Cirelli AF. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J Hazard Mater. 2010;180:1–19.

    Article  CAS  Google Scholar 

  2. Srividya K, Mohanty K. Biosorption of hexavalent chromium from aqueous solutions by Catla catla scales: equilibrium and kinetics studies. Chem Eng J. 2009;155:666–73.

    Article  CAS  Google Scholar 

  3. McFarlane NL, Wagner NJ. Calorimetric study of the adsorption of poly(ethylene oxide) and poly(vinylpyrrolidone) onto cationic nanoparticles. Langmuir. 2010;26:6262–7.

    Article  CAS  Google Scholar 

  4. Chowdhry BZ, Beezer AE, Greenhow EJ. Analysis of drugs by microcalorimetry: isothermal power-conduction calorimetry and thermometric titrimetry. Talanta. 1983;30:209–43.

    Article  CAS  Google Scholar 

  5. Arakaki LNH, Diniz JS, Silva ALP, Augusto Filha VLS, Fonseca MG, Espínola JGP, Arakaki T. Thermal study of chelates of Co(II), Cu(II), Ni(II), Cr(III), Mo(III), and Fe(III) with bis(acetylacetone)ethylenediimine on activated silica gel surface. J Therm Anal Calorim. 2009;97:377–82.

    Article  CAS  Google Scholar 

  6. Dizge N, Keskinler B, Tanriseven A. Covalent attachment of microbial lipase onto microporous styrene–divinylbenzene copolymer by means of polyglutaraldehyde. Colloids Surf B. 2008;66:34–8.

    Article  CAS  Google Scholar 

  7. Vieira EFS, Cestari AR, Silva RG, Pinto AA, Miranda CR, Conceição ACF. Use of calorimetry to evaluate cement slurry resistance to the attack of acid solutions. Thermochim Acta. 2004;419:45–9.

    Article  CAS  Google Scholar 

  8. Vieira EFS, da Costa LP, Cestari AR. Preparation and characterization of polyalginate-glutaraldehyde membranes-swelling analysis by microcalorimetry and adsorption kinetics of cationic dye. J Appl Polym Sci. 2010;118:857–65.

    CAS  Google Scholar 

  9. Pati F, Adhikari B, Dhara S. Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour Technol. 2010;101:3737–42.

    Article  CAS  Google Scholar 

  10. Liu WT, Zhang Y, Li GY, Miao YQ, Wu XH. Structure and composition of teleost scales from snakehead Channa argus (Cantor) (Perciformes: Channidae). J Fish Biol. 2008;72:1055–67.

    Article  Google Scholar 

  11. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004;37:790–802.

    CAS  Google Scholar 

  12. Sardohan T, Kir E, Gulec A, Cengeloglu Y. Removal of Cr(III) and Cr(VI) through the plasma modified and unmodified ion-exchange membranes. Sep Purif Technol. 2010;74:14–20.

    Article  CAS  Google Scholar 

  13. Tanriseven A, Zehra O. A novel method for the immobilization of glucoamylase onto polyglutaraldehyde-activated gelatin. Biochem Eng J. 2008;39:430–4.

    Article  CAS  Google Scholar 

  14. Nadeem R, Ansari TM, Khalid AM. Fourier transform infrared spectroscopic characterization and optimization of Pb(II) biosorption by fish (Labeo rohita) scales. J Hazard Mater. 2008;156:64–73.

    Article  CAS  Google Scholar 

  15. Yongli C, Xiufang Z, Yandao G, Nanming Z, Tingying Z, Xinqi S. Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles. J Colloid Interface Sci. 1999;214:38–45.

    Article  CAS  Google Scholar 

  16. Bella J, Brodsky B, Bermanl HM. Hydration structure of a collagen peptide. Structure. 1995;3:893–906.

    Article  CAS  Google Scholar 

  17. Mack C, Wilhelm B, Duncan JR, Burgess JE. Biosorption of precious metals. Biotechnol Adv. 2007;25:264–71.

    Article  CAS  Google Scholar 

  18. Panczyk T, Warzocha TP, Szabelski P, Rudzinski W. Kinetic adsorption energy distributions of rough surfaces: a computational study. Langmuir. 2008;24:8719–25.

    Article  CAS  Google Scholar 

  19. Carvalho WA, Zanin CICB, Zanutelo C, Figueiredo FCA, Cestari AR, Vieira EFS. Cadmium(II) adsorption by activated carbon: batch studies and reversibility. Int J Environ Technol Manag. 2010;12:257–76.

    Article  CAS  Google Scholar 

  20. Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environ Pollut. 2000;107:263–83.

    Article  CAS  Google Scholar 

  21. Wadso I. Trends in isothermal microcalorimetry. Chem Soc Rev. 1997;26:79–86.

    Article  Google Scholar 

  22. Moreno-Piraján JC, Tirano J, Salamanca B, Giraldo L. Activated carbon modified with copper for adsorption of propanethiol. Int J Mol Sci. 2010;11:927–42.

    Article  Google Scholar 

  23. Cestari AR, Vieira EFS, Matos JDS, dos Anjos DSC. Determination of kinetic parameters of Cu(II) interaction with chemically modified thin chitosan membranes. J Colloid Interface Sci. 2005;285:288–95.

    Article  CAS  Google Scholar 

  24. Cotoruelo LM, Marques MD, Rodríguez-Mirasol J, Cordero T, Rodríguez JJ. Sorption of aromatic compounds on activated carbons from lignin: kinetic study. Ind Eng Chem Res. 2007;46:2853–60.

    Article  CAS  Google Scholar 

  25. Lazaridis NK, Karapantsios TD, Georgantas D. Kinetic analysis for the removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption. Water Res. 2003;37:3023–33.

    Article  CAS  Google Scholar 

  26. Kadirvelu K, Faur-Brasquet C, Le Cloirec P. Removal of Cu(II), Pb(II), and Ni(II) by adsorption onto activated carbon cloths. Langmuir. 2000;16:8404–9.

    Article  CAS  Google Scholar 

  27. Wadsö I. Characterization of microbial activity in soil by use of isothermal microcalorimetry. J Therm Anal Calorim. 2009;95:843–50.

    Article  Google Scholar 

  28. Navrotsky A. Energetics of oxide nanoparticles. Int J Quantum Chem. 2009;109:2647–57.

    Article  CAS  Google Scholar 

  29. Selomulya C, Meeyoo V, Amal R. Mechanisms of Cr(VI) removal from water by various types of activated carbons. J Chem Technol Biotechnol. 1999;74:111–22.

    Article  CAS  Google Scholar 

  30. Hu Z, Lei L, Li Y, Ni Y. Chromium adsorption on high-performance activated carbons from aqueous solution. Sep Purif Technol. 2003;31:13–8.

    Article  CAS  Google Scholar 

  31. Dakiky M, Khamis M, Manassra A, Mereb M. Selective adsorption of Cr(VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv Environ Res. 2002;6:533–40.

    Article  CAS  Google Scholar 

  32. Zhao N, Na W, Li J, Qiao Z, Jing C, Fei H. Surface properties of chemically modified activated carbons for adsorption rate of Cr(VI). Chem Eng J. 2005;115:133–8.

    Article  CAS  Google Scholar 

  33. Hamadi NK, Chen XD, Farid MM, Lu MGQ. Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chem Eng J. 2001;84:95–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Brazilian agencies CAPES and CNPq for financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio R. Cestari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moura, K.O., Vieira, E.F.S. & Cestari, A.R. The use of solution microcalorimetry to evaluate chemically modified fish scales as a viable adsorbent for heavy metals. J Therm Anal Calorim 107, 999–1005 (2012). https://doi.org/10.1007/s10973-011-1612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1612-8

Keywords

Navigation