Skip to main content
Log in

Selective self-assembly synthesis of MnV2O6·4H2O with controlled morphologies and study on its thermal decomposition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The MnV2O6·4H2O with rod-like morphologies was synthesized by solid-state reaction at low heat using MnSO4·H2O and NH4VO3 as raw materials. XRD analysis showed that MnV2O6·4H2O was a compound with monoclinic structure. Magnetic characterization indicated that MnV2O6·4H2O and its calcined products behaved weak magnetic properties. The thermal process of MnV2O6·4H2O experienced three steps, which involves the dehydration of the two waters of crystallization at first, and then dehydration of other two waters of crystallization, and at last melting of MnV2O6. In the DSC curve, the three endothermic peaks were corresponding to the two steps thermal decomposition of MnV2O6·4H2O and melting of MnV2O6, respectively. Based on the Kissinger equation, the average values of the activation energies associated with the thermal decomposition of MnV2O6·4H2O were determined to be 55.27 and 98.30 kJ mol−1 for the first and second dehydration steps, respectively. Besides, the thermodynamic function of transition state complexes (ΔH , ΔG , and ΔS ) of the decomposition reaction of MnV2O6·4H2O were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Valanarasu S, Chandramohan R. Effect of Pb doping on structural and electrochemical properties of combustion synthesised LiCoO2 powder. J Mater Sci. 2010;45:2317–23.

    Article  CAS  Google Scholar 

  2. Arai H, Tsuda M, Saito K, Hayashi M, Sakurai Y. Thermal reactions between delithiated lithium nickelate and electrolyte solutions. J Electrochem Soc. 2002;149:401–6.

    Article  Google Scholar 

  3. Park BG, Kim S, Kim ID, Park YJ. Structural and electrochemical performance of three-dimensional LiMn2O4 thin film. J Mater Sci. 2010;45:3947–53.

    Article  CAS  Google Scholar 

  4. Xiang HF, Wang H, Chen CH, Ge XW, Guo S, Sun JH, Hu WQ. Thermal stability of LiPF6-based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries. J Power Sources. 2009;191:575–81.

    Article  CAS  Google Scholar 

  5. Wang YD, Jiang JW, Dahn JR. The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte. Electrochem Commun. 2007;9:2534–40.

    Article  CAS  Google Scholar 

  6. Kim SS, Ikuta H, Wakihara M. Synthesis and characterization of MnV2O6 as a high capacity anode material for a lithium secondary battery. Solid State Ion. 2001;139:57–65.

    Article  CAS  Google Scholar 

  7. Liu HW, Tang DG. Synthesis of ZnV2O6 powder and its cathodic performance for lithium secondary battery. Mater Chem Phys. 2009;114:656–9.

    Article  CAS  Google Scholar 

  8. Andrukaitis E, Cooper JP, Smit JH. Lithium intercalation in divalent metal vanadates MeV2O6 (Me = Cu, Co, Ni, Mn or Zn). J Power Sources. 1995;54:465–9.

    Article  CAS  Google Scholar 

  9. Cao XY, Xie JG, Zhan H, Zhou YH. Synthesis of CuV2O6 as a cathode material for rechargeable lithium batteries from V2O5 gel. Mater Chem Phys. 2006;98:71–5.

    Article  CAS  Google Scholar 

  10. Ni SB, Zhou G, Wang XH, Sun XL, Yang F, Liu YQ, He DY. Synthesis of Zn3(OH)2V2O7·nH2O hierarchical nanostructures and their photoluminescence properties. Mater Chem Phys. 2010;120:426–30.

    Article  CAS  Google Scholar 

  11. Hara D, Shirakawa J, Ikuta H, Uchimoto Y, Wakihara M, Miyanaga T, Watanabe I. Charge–discharge reaction mechanism of manganese vanadium oxide as a high capacity anode material for lithium secondary battery. J Mater Chem. 2002;12:3717–22.

    Article  CAS  Google Scholar 

  12. Manivannan V, Parhi P, Howard J. Mechanochemical metathesis synthesis and characterization of nano-structured MnV2O6·xH2O (x = 2, 4). J Cryst Growth. 2008;310:2793–9.

    Article  CAS  Google Scholar 

  13. Leroux F, Piffard Y, Ouvrard G, Mansot JL, Guyomard D. New amorphous mixed transition metal oxides and their Li derivatives: synthesis, characterization, and electrochemical behavior. Chem Mater. 1999;11:2948–59.

    Article  CAS  Google Scholar 

  14. Liao JH, Leroux F, Drezen T, Guyomard D, Piffard Y. Synthesis, structures and thermal analysis of MnV2O6·nH2O (n = 1, 2 and 4). Eur J Solid State Inorg Chem. 1996;33:411–27.

    CAS  Google Scholar 

  15. Morishita T, Nomura K, Inamasu T, Inagaki M. Synthesis of anhydrous manganese vanadate powder by coprecipitation and its anodic performance for lithium secondary battery. Solid State Ion. 2005;176:2235–41.

    Article  CAS  Google Scholar 

  16. Takahiro Morishita T, Konno H, Izumi Y, Inagaki M. Oxidation state of vanadium in amorphous MnV2O6 formed during discharge–charge cycle and the improvement of its synthesis condition. Solid State Ion. 2006;177:1347–53.

    Article  Google Scholar 

  17. Liu Y, Zhang YG, Du J, Yu WC, Qian YT. Synthesis and characterization of single-crystal MnV2O6 nanobelts. J Cryst Growth. 2006;291:320–4.

    Article  CAS  Google Scholar 

  18. Parhi P, Manivannan V. Novel solution phase metathetic pathway for the synthesis of MnV2O6·H2O. Mater Res Bull. 2008;43:2966–73.

    Article  CAS  Google Scholar 

  19. Huang WD, Gao SK, Ding XK, Jiang LL, Wei MD. Crystalline MnV2O6 nanobelts: synthesis and electrochemical properties. J Alloys Compd. 2010;495:185–8.

    Article  CAS  Google Scholar 

  20. Wu WW, Wu XH, Lai SB, Liao S. Non-isothermal kinetics of thermal decomposition of NH4ZrH(PO4)2·H2O. J Therm Anal Calorim. 2010. doi:10.1007/s10973-010-0986-3.

  21. Wu XH, Wu WW, Li SS, Cui XM, Liao S. Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O. J Therm Anal Calorim. 2011;103:805–12.

    Article  CAS  Google Scholar 

  22. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  23. Boonchom B, Puttawong S. Thermodynamics and kinetics of the dehydration reaction of FePO4·2H2O. Phys B. 2010;405:2350–5.

    Article  CAS  Google Scholar 

  24. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008;81:253–62.

    Article  CAS  Google Scholar 

  25. Mansurova AN, Gulyaeva RI, Chumarev VM, Mar’evich VP. Thermochemical properties of MnNb2O6. J Therm Anal Calorim. 2010;101:45–7.

    Article  CAS  Google Scholar 

  26. Wu XH, Wu WW, Liu C, Li SS, Liao S, Cai JC. Synthesis of layered sodium manganese phosphate via low-heating solid-state reaction and its properties. Chin J Chem. 2010;28:2394–8.

    Article  CAS  Google Scholar 

  27. Boonchom B, Danvirutai C, Maensiri S. Soft solution synthesis, non-isothermal decomposition kinetics and characterization of manganese dihydrogen phosphate dihydrate Mn(H2PO4)2·2H2O and its thermal transformation products. Mater Chem Phys. 2008;109:404–10.

    Article  CAS  Google Scholar 

  28. Liu C, Wu XH, Wu WW, Cai JC, Liao S. Preparation of nanocrystalline LiMnPO4 via a simple and novel method and its isothermal kinetics of crystallization. J Mater Sci. 2011;46:2474–8.

    Article  CAS  Google Scholar 

  29. Ceccato R, Carturan G, Decker F, Artuso F. Sol-gel synthesis of vanadate-based thin films as counter electrodes in electrochromic devices. J Sol-Gel Sci Technol. 2003;26:1071–4.

    Article  CAS  Google Scholar 

  30. Rodella CB, Franco RWA, Magon CJ, Donoso JP, Nunes LAO, Saeki MJ, Aegerter MA, Sargentelli V, Florentino AO. V2O5/TiO2 catalytic xerogels Raman and EPR studies. J Sol-Gel Sci Technol. 2002;25:83–8.

    Article  CAS  Google Scholar 

  31. Beg S, Al-Alas A, Al-Areqi NAS. Study on structural and electrical properties of layered perovskite-type oxide-ion conductor. Mater Chem Phys. 2010;124:305–11.

    Article  CAS  Google Scholar 

  32. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dihydrate. J Chem Eng Data. 2008;53:1533–8.

    Article  CAS  Google Scholar 

  33. Danvirutai C, Noisong P, Youngme S. Some thermodynamic functions and kinetics of thermal decomposition of NH4MnPO4·H2O in nitrogen atmosphere. J Therm Anal Calorim. 2010;100:117–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Guangxi Natural Scientific Foundation of China (Grant No. 2011GXNSFA018036), and the Guangxi Science and Technology Agency Research Item of China (Grant No. 0992001-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Wu, W., Cui, X. et al. Selective self-assembly synthesis of MnV2O6·4H2O with controlled morphologies and study on its thermal decomposition. J Therm Anal Calorim 109, 163–169 (2012). https://doi.org/10.1007/s10973-011-1577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1577-7

Keywords

Navigation