Skip to main content
Log in

Kinetics of the thermal dehydration of potassium titanium oxalate, K2TiO(C2O4)2·2H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal dehydration reaction of potassium titanium oxalate, K2TiO(C2O4)2·2H2O, has been studied by means of thermogravimetry (TG), differential thermal analysis (DTA), and differential scanning calorimetry (DSC) in nitrogen atmosphere at different heating rates. K2TiO(C2O4)2·2H2O dehydrates in a single step through a practically irreversible process. The activation energy involved and its dependence on the conversion degree were estimated by evaluating the thermogravimetric data according to model-free methods, and values of activation energy were determined for the dehydration reaction. Activation energy values were also evaluated from DSC data using isoconversional methods. The complexity of the dehydration of K2TiO(C2O4)2·2H2O is illustrated by the dependence of E on the extent of conversion, α (0.05 ≤ α ≤ 0.95).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gopalakrishnamurhty HS, Rao MS, Kutty TRN. Thermal decomposition of titanyl oxalates. II. Kinetics of decomposition of barium titanyl oxalate. J Inorg Nucl Chem. 1975;37:1875–8.

    Article  Google Scholar 

  2. Patra BS, Otta S, Battamisra SD. A kinetic and mechanistic study of thermal decomposition of strontium titanyl oxalate. Thermochim Acta. 2006;441:84–8.

    Article  CAS  Google Scholar 

  3. Duval C. Inorganic thermogravimetric analysis. 2nd ed. Amsterdam: Elsevier; 1963.

    Google Scholar 

  4. Galwey AK, Brown ME. An appreciation of the chemical approach of V. V. Boldyrev to the study of the decomposition of solids. J Therm Anal Calorim. 2007;90:9–22.

    Article  CAS  Google Scholar 

  5. Majumdar S, Sharma IG, Bidaye AC, Suri AK. A study on isothermal kinetics of thermal decomposition of cobalt oxalate to cobalt. Thermochim Acta. 2008;473:45–9.

    Article  CAS  Google Scholar 

  6. Donkora B, Mehandjiev D. Mechanism of decomposition of manganese (II) oxalate dihydrate and manganese (II) oxalate trihydrate. Thermochim Acta. 2004;421:141–9.

    Article  Google Scholar 

  7. Al-Newaiser FA, Al-Thabaiti SA, Al-Youbi AO, Obaid AY, Gabal MA. Thermal decomposition kinetics of strontium oxalate. Chem Pap. 2007;61:370–5.

    Article  CAS  Google Scholar 

  8. Torres-Garcia J, Balmaseda J, del Castillo LF, Reguera E. Thermal evolution of microporous nitroprussides on their dehydration process. J Therm Anal Calorim. 2006;86:371–7.

    Article  CAS  Google Scholar 

  9. Chambré D, Iditoiu C, Segal E. Non-isothermal dehydration kinetics of acrylic ion-exchange resins. J Therm Anal Calorim. 2007;88:673–9.

    Article  Google Scholar 

  10. Logvinenko V, Fedorov V, Mironov Yu, Drebushchak V. Kinetic and thermodynamic stability of cluster compounds under heating. J Therm Anal Calorim. 2007;88:687–92.

    Article  CAS  Google Scholar 

  11. Vlaev LT, Georgieva VG, Genieva SD. Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds. J Therm Anal Calorim. 2007;88:805–12.

    Article  CAS  Google Scholar 

  12. Boonchom B, Youngme S, Srithanratana T, Danvirutai C. Synthesis of AlPO4 and kinetics of thermal decomposition of AlPO4·H2O–H4 precursor. J Therm Anal Calorim. 2008;91:511–6.

    Article  CAS  Google Scholar 

  13. Jankovic B, Adnadevic B, Jovanovic J. Isothermal kinetics of dehydration of equilibrium swollen poly(acrylic acid) hydrogel. J Therm Anal Calorim. 2008;92:821–7.

    Article  CAS  Google Scholar 

  14. Neacsu A, Contineanu I, Popa VT, Contineanu M. Dehydration of irradiated and non-irradiated L-a-asparagine monohydrate. J Therm Anal Calorim. 2008;94:405–10.

    Article  CAS  Google Scholar 

  15. Logvinenko V. Model-free approach in the study of decomposition kinetics for cluster compounds and coordination compounds. J Therm Anal Calorim. 2008;93:805–9.

    Article  CAS  Google Scholar 

  16. Masset PJ. Thermogravimetric study of the dehydration reaction of LiCl·H2O. J Therm Anal Calorim. 2009;96:439–41.

    Article  CAS  Google Scholar 

  17. Çilgi GK, Cetisli H. Thermal decomposition kinetics of aluminum sulfate hydrate. J Therm Anal Calorim. 2009;98:855–61.

    Article  Google Scholar 

  18. Boonchom B, Danvirutai C, Thongkam M. Non-isothermal decomposition kinetics of synthetic serrabrancaite (MnPO4·H2O) precursor in N2 atmosphere. J Therm Anal Calorim. 2010;99:357–62.

    Article  CAS  Google Scholar 

  19. Boonchom B, Kongtaweelert S. Study of kinetics and thermodynamics of the dehydration reaction of AlPO4·H2O. J Therm Anal Calorim. 2010;99:531–8.

    Article  CAS  Google Scholar 

  20. Foppoli A, Zema L, Maroni A, Sangalli ME, Caira MR, Gazzaniga A. Dehydration kinetics of theophylline-7-acetic acid monohydrate. J Therm Anal Calorim. 2010;99:649–54.

    Article  CAS  Google Scholar 

  21. Danvirutai C, Noisong P, Youngme S. Some thermodynamic functions and kinetics of thermal decomposition of NH4MnPO4·H2O in nitrogen atmosphere. J Therm Anal Calorim. 2010;100:117–24.

    Article  CAS  Google Scholar 

  22. Ischenko V, Pippel E, Köferstein R, Abicht HP, Woltersdorf J. Barium titanate via thermal decomposition of Ba,Ti-precursor complexes: the nature of the intermediate phases. Solid State Sci. 2007;9:21–6.

    Article  CAS  Google Scholar 

  23. Gopalakrishnamurhty HS, Rao MS, Kutty TRN. Thermal decomposition of titanyl oxalates. I. Barium titanyl oxalate. J Inorg Nucl Chem. 1975;37:1891–8.

    Google Scholar 

  24. Kuntic V, Pejic N, Misic S, Vukojevic V, Vujic Z, Malesev D. Determination of quercetin in pharmaceutical formations via its reaction with potassium titanyloxalate. Determination of the stability constants of the quercetin titanyloxalato complex. J Serb Chem Soc. 2005;70:753–63.

    Article  Google Scholar 

  25. Pejic N, Kuntic V, Malesev D. Potassium titanyloxalate as analytical reagents for micro-quantitative determination of quercetin. Pharmazie. 2001;56:216–7.

    Google Scholar 

  26. Celis K, Van Driessche I, Mouton R, Vanhoyland G, Hoste S. Thermomicroscopy as a tool to study the kinetics of consecutive reactions in the solid state. Meas Sci Rev. 2001;1:177–80.

    Google Scholar 

  27. Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.

    Article  CAS  Google Scholar 

  28. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics. I. Isothermal kinetic studies. Thermochim Acta. 2005;429:93–102.

    Article  CAS  Google Scholar 

  29. Khawam A, Flanagan DR. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. J Phys Chem. 2005;109B:10073–80.

    Google Scholar 

  30. Muraleedharan K, Labeeb P, Abdul Mujeeb VM, Aneesh MH, Ganga Devi T, Kannan MP. Effect of particle size on the thermal decomposition kinetics of potassium titanium oxalate. Z Phys Chem. doi:10.1524/zpch.2011.0051.

  31. Brown ME, Gallagher PK, editors. Handbook of thermal analysis and calorimetry, vol. 5, recent advances, techniques and applications. Amsterdam: Elsevier; 2008.

    Google Scholar 

  32. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  33. Vyazovkin S. Model-free kinetics staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  34. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301–24.

    Article  CAS  Google Scholar 

  35. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  36. Sbirrazzuoli N, Girault Y, Elegant L. Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3. Peak maximum evolution methods and isoconversional methods. Thermochim Acta. 1997;293:25–37.

    Article  CAS  Google Scholar 

  37. Hatakeyama T, Zhenhai L. Handbook of thermal analysis. Chichester: Wiley; 1998. p. 47–9.

    Google Scholar 

  38. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–46.

    Article  CAS  Google Scholar 

  39. Leoni E, Tomi P, Khoumeri B, Balbi N, Bernardini AF. Thermal degradation of pinus pinaster needles by DSC. Part 1. Dehydration kinetics. J Fire Sci. 2001;19:379–97.

    Article  CAS  Google Scholar 

  40. Broadbent D, Dollimore D, Dollimore J. Thermogravimetry and differential thermal analysis studies on potassium titanyl oxalate and potassium aluminium oxalate and related oxalates. Analyst. 1969;94:543–53.

    Article  CAS  Google Scholar 

  41. Papazian HA, Pizzolato PJ, Patrick JA. Thermal decomposition of oxalates of ammonium and potassium. J Am Cer Soc. 1971;54:250–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to KSCSTE for the provision of instrumental facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muraleedharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muraleedharan, K., Labeeb, P. Kinetics of the thermal dehydration of potassium titanium oxalate, K2TiO(C2O4)2·2H2O. J Therm Anal Calorim 109, 89–96 (2012). https://doi.org/10.1007/s10973-011-1557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1557-y

Keywords

Navigation