Skip to main content
Log in

Differential scanning calorimetric examination of the human hyaline cartilage of the femoral head after femoral neck fracture

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The femoral neck fracture continues to be unsolved fractures and the guidelines for management are still evolving. The primary complications arising from femoral neck fractures are non-union and avascular necrosis. The various methods currently available for predicting the vascularity of the head at the time of fracture are not sufficiently quantitative to be used on a routine clinical basis. The hypothesis was that after the femoral neck fracture there are clear pathological abnormalities in the cartilage of the femoral head, which could be monitored besides the classical methods by differential scanning calorimetry. The thermal denaturation of human samples was monitored by a SETARAM Micro DSC-II calorimeter. All the experiments were performed between 0 and 100 °C. The heating rate was 0.3 K/min. DSC scans clearly demonstrated significant differences between the control and different stages avascular samples (control, fresh fractures: T m  = 68.2 °C, ΔH cal = 2.87 J/g, avascular necrosis: T m  = 70.7 °C, ΔH cal = 3.61 J/g,). These observations could be explained with the structural alterations caused by the biochemical processes during the degeneration of the cartilage due to avascular femoral head necrosis. With the investigations the authors could demonstrate that DSC is a useful and well-applicable method for the investigation of hyaline cartilage of the fractured human femoral head. It was confirmed significances between the changes of calorimetric results and the elapsed time from the primary femoral neck fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raaymakers EL. Fractures of the femoral neck: a review and personal statement. Acta Chir Orthop Traumatol Cech. 2006;73:45–59.

    Google Scholar 

  2. Koval KJ, Zuckerman JD. Hip fractures: I. Overview and evaluation and treatment of femoral-neck fractures. J Am Acad Orthop Surg. 1994;2:141–9.

    Google Scholar 

  3. Goldacre MJ, Roberts SE, Yeates D. Mortality after admission to hospital with fractured neck of femur: database study. BMJ. 2002;325:868–9.

    Article  Google Scholar 

  4. Kregor PJ. The effect of femoral neck fractures on femoral head blood flow. Orthopedics. 1996;19:1031–6.

    CAS  Google Scholar 

  5. Garden RS. Reduction and fixation of subcapital fractures of the femur. Orthop Clin North Am. 1974;5:683.

    CAS  Google Scholar 

  6. Maquet P. Femur-neck abduction fractures. Acta Orthop Belg. 1972;38:688–96.

    CAS  Google Scholar 

  7. Hammer AJ. Non union of subcapital femoral neck fractures. J Orthop Trauma. 1992;6:73–7.

    CAS  Google Scholar 

  8. Kyle RF. Fractures of the femoral neck. Instr Course Lect. 2009;58:61–8.

    Google Scholar 

  9. Nikolopoulos KE, Papadakis SA, Kateros KT, Themistocleous GS, Vlamis JA, Papagelopoulos PJ, Nikiforidis PA. Long-term outcome of patients with avascular necrosis, after internal fixation of femoral neck fractures. Injury. 2003;34:525–8.

    Article  CAS  Google Scholar 

  10. Leonardsson O, Sernbo I, Carlsson A, Akesson K, Rogmark C. Long-term follow-up of replacement compared with internal fixation for displaced femoral neck fractures: results at ten years in a randomised study of 450 patients. J Bone Joint Surg Br. 2010;92:406–12.

    Article  CAS  Google Scholar 

  11. Aleem IS, Karanicolas PJ, Bhandari M. Arthroplasty versus internal fixation of femoral neck fractures: a clinical decision analysis. Ortop Traumatol Rehabil. 2009;11:233–41.

    Google Scholar 

  12. Heetveld MJ, Rogmark C, Frihagen F, Keating J. Internal fixation versus arthroplasty for displaced femoral neck fractures: what is the evidence? J Orthop Trauma. 2009;23:395–402.

    Article  Google Scholar 

  13. Gjertsen JE, Vinje T, Engesaeter LB, Lie SA, Havelin LI, Furnes O, Fevang JM. Internal screw fixation compared with bipolar hemiarthroplasty for treatment of displaced femoral neck fractures in elderly patients. J Bone Joint Surg Am. 2010;92:619–28.

    Article  Google Scholar 

  14. Gill TJ, Sledge JB, Ekkernkamp A, Ganz R. Intraoperative assessment of femoral head vascularity after femoral neck fracture. J Orthop Trauma. 1998;12:474–8.

    Article  CAS  Google Scholar 

  15. Cho MR, Lee SW, Shin DK, Kim SK, Kim SY, Ko SB, Kwun KW. A predictive method for subsequent avascular necrosis of the femoral head (AVNFH) by observation of bleeding from the cannulated screw used for fixation of intracapsular femoral neck fractures. J Orthop Trauma. 2007;21:158–64.

    Article  Google Scholar 

  16. Watanabe Y, Terashima Y, Takenaka N, Kobayashi M, Matsushita T. Prediction of avascular necrosis of the femoral head by measuring intramedullary oxygen tension after femoral neck fracture. J Orthop Trauma. 2007;21:456–61.

    Article  Google Scholar 

  17. Maeda S, Kita A, Fujii G, Funayama K, Yamada N, Kokubun S. Avascular necrosis associated with fractures of the femoral neck in children: histological evaluation of core biopsies of the femoral head. Injury. 2003;34:283–6.

    Article  CAS  Google Scholar 

  18. Hirotani H, Ito T. The fate of the articular cartilage in intracapsular fracture of the femoral neck (articular cartilage in femoral neck fracture). Arch Orthop Unfallchir. 1976;86:195–209.

    Article  CAS  Google Scholar 

  19. Bassett LW, Gold RH, Reicher MA, et al. Magnetic resonance imaging in the early diagnosis of ischemic necrosis of the femoral head. Clin Orthop. 1987;214:237–48.

    Google Scholar 

  20. Totty WG, Murphy WA, Ganz WI, et al. Magnetic resonance imaging of the normal and ischemic femoral head. Am J Roentgenol. 1984;143:1273–80.

    CAS  Google Scholar 

  21. Kaushik A, Sankaran B, Varghese M. Prognostic value of dynamic MRI in assessing post-traumatic femoral head vascularity. Skeletal Radiol. 2009;38:565–9.

    Article  Google Scholar 

  22. Hirata T, Konishiike T, Kawai A, Sato T, Inoue H. Dynamic magnetic resonance imaging of femoral head perfusion in femoral neck fracture. Clin Orthop Relat Res. 2001;393:294–301.

    Article  Google Scholar 

  23. Jergesen HE, Lang P, Moseley M, Genant HK. Histologic correlation in magnetic resonance imaging of femoral head osteonecrosis. Clin Orthop. 1990;253:150–63.

    Google Scholar 

  24. Lang P, Jergesen HE, Moseley ME, et al. Avascular necrosis of the femoral head: high-field-strength MR imaging with histologic correlation. Radiology. 1988;169:517–24.

    CAS  Google Scholar 

  25. Simmons DJ, Daum WJ, Totty W, Murphy WA. Correlation of MR images with histology in avascular necrosis in the hip. J Arthroplasty. 1989;4:7–14.

    Article  CAS  Google Scholar 

  26. Gazsó I, Kránicz J, Bellyei Á, Lőrinczy D. DSC analysis of the abnormalities of human leg skeletal muscles. A preliminary study. Thermochimica Acta. 2003;402:117–22.

    Article  Google Scholar 

  27. Domán I, Illés T, Lőrinczy D. Differential scanning calorimetric examination of the human intervertebral disc: establishment of calorimetric standards of different stages of degeneration. Thermochimica Acta. 2003;405:293–9.

    Article  Google Scholar 

  28. Sillinger T, Than P, Kocsis B, Lőrinczy D. Differential scanning calorimetric measurement of cartilage destruction caused by septic arthritis. J Thermal Anal Calorim. 2005;82:221–3.

    Article  CAS  Google Scholar 

  29. Pintér C, Bognár G, Horváth B, Sydo T, Ligeti E, Pulai J, Lőrinczy D. DSC analysis of human fat tissue in idiopathic avascular necrosis of the femoral head–a preliminary study. J Thermal Anal Calorim. 2009;95:781–5.

    Article  Google Scholar 

  30. Benkő L, Danis J, Hubmann R, Kasza G, Gömöri É, Rőth E, Lőrinczy D. DSC examination of the esophagus after implication of special stents, designed for the management of acute esophagus variceal bleeding. An experimental study. J Thermal Anal Calorim. 2009;95:763–8.

    Article  Google Scholar 

  31. Bognár G, Szabó I, Pintér C, Ligeti E, Lőrinczy D. Changes in thermal denaturation properties of the long head of the biceps during lifetime. J Thermal Anal Calorim. 2010;102:65–8.

    Article  Google Scholar 

  32. Wiegand N, Vámhidy L, Lőrinczy D. Differential scanning calorimetric examination of ruptured lower limb tendons in human. J Thermal Anal Calorim. 2010;101:487–92.

    Article  CAS  Google Scholar 

  33. Sohár G, Pallagi E, Szabó-Révész P, Tóth K. New thermogravimetric protocol for the investigation of normal and damaged human hyaline cartilage. J Thermal Anal Calorim. 2007;89:853–6.

    Article  Google Scholar 

  34. Tóth K, Sohár G, Aigner Z, Greksa F, Szabó-Révész P. Novel calorimetric properties of human cartilage samples in rheumatoid arthritis. J Thermal Anal Calorim. 2009;5:813–5.

    Article  Google Scholar 

  35. Tóth K, Sohár G, Pallagi E, Szabó-Révész P. Further characterization of degenerated human cartilage with differential scanning calorimetry. Thermochimica Acta. 2007;464:75–7.

    Article  Google Scholar 

  36. Than P, Vermes C, Schäffer B, Lõrinczy D. Differential scanning calorimetric examination of the human hyaline cartilage. A preliminary study. Thermochimica Acta. 2000;346:147–51.

    Article  CAS  Google Scholar 

  37. DeSimone DP, Parsons DB, Johnson KE, Jakobs RP. Type II collagen-induced arthritis. A morphologic and biochemical study of articular cartilage. Arthritis Rheum. 1983;26:1245–58.

    Article  CAS  Google Scholar 

  38. Sweet MBE, Thonar EJ, Immelman AR, Solomon L. Biochemical changes in progressive osteoarthrosis. Ann Rheum Dis. 1977;36:387–98.

    Article  CAS  Google Scholar 

  39. Meacock SC, Bodmer JL, Billingham ME. Experimental osteoarthritis in guinea-pigs. J Exp Pathol. 1990;71:279–93.

    CAS  Google Scholar 

  40. Muehleman C, Arsenis CH. Articular cartilage. Part II. The osteoarthritic joint. J Am Podiatr Med Assoc. 1995;85:282–6.

    CAS  Google Scholar 

  41. Schwartz ER, Oh WH, Leveille CR. Experimentally induced osteoarthritis in guinea pigs: metabolic responses in articular cartilage to developing pathology. Arthritis Rheum. 1981;24:1345–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The SETARAM Micro DSC-II was purchased with a grant (CO-272) from the Hungarian Scientific Research Fund (Dénes Lőrinczy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lőrinczy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumov, I., Wiegand, N., Patczai, B. et al. Differential scanning calorimetric examination of the human hyaline cartilage of the femoral head after femoral neck fracture. J Therm Anal Calorim 108, 59–65 (2012). https://doi.org/10.1007/s10973-011-1532-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1532-7

Keywords

Navigation