Skip to main content
Log in

Preparation and thermal properties of expanded graphite/paraffin/organic montmorillonite composite phase change material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Expanded graphite (EG)/paraffin/organic montmorillonite (OMMT) composite phase change material (PCM) was prepared by using melt intercalation method. The microstructure of EG/paraffin/OMMT is observed by scanning electron microscope (SEM). The thermal properties are investigated by differential scanning calorimetry (DSC). The mass loss of EG/paraffin/OMMT after 50 heating cycles was measured for investigating the influence of EG and OMMT on the thermal properties of paraffin. The results show that EG and OMMT have the ability of adsorption and shape-stability. The melting point EG/paraffin/OMMT is decreased slightly with an addition of paraffin and the latent heat of EG/paraffin/OMMT is determined by the mass ratio of paraffin. The heat transfer efficiency of EG/paraffin/OMMT is strengthened and the heating time is decreased to one-sixth of that of paraffin by addition of EG and OMMT. The thermal stability of EG/paraffin/OMMT is improved by addition of OMMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abhat A. Low temperature latent thermal energy storage system: heat storage materials. Sol Energy. 1983;30:313–32.

    Article  CAS  Google Scholar 

  2. Murat K, Khamid M. Solar energy storage using phase change materials. Renew Sustain Energy Rev. 2007;11:1913–65.

    Article  Google Scholar 

  3. Farid MM, Khudhair AM, et al. A review on phase change energy storage: materials and applications. Energy Convers Manage. 2004;45:1597–615.

    Article  CAS  Google Scholar 

  4. Zeng JL, Liu YY, et al. Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM. J Therm Anal Calorim. 2008;91:443–6.

    Article  CAS  Google Scholar 

  5. Fukushima H, Drzal LT, et al. Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim. 2006;85:235–8.

    Article  CAS  Google Scholar 

  6. Sarı A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change materials. Appl Therm Eng. 2007;27:1271–7.

    Article  Google Scholar 

  7. Karaipekli A, Sarı A, Kaygusuz K. Thermal conductivity improvement of stearic cid using expanded graphite and carbon fiber for energy storage applications. Renew Energy. 2007;32:2201–10.

    Article  CAS  Google Scholar 

  8. Leite AMD, Maia LF, et al. Thermal properties from membrane of polyamide 6/montmorillonite clay nanocomposites obtained by immersion precipitation method. J Therm Anal Calorim. 2009;97:577–80.

    Google Scholar 

  9. Costache MC, Wang D, Heidecker MJ, Manias E, Wilkie CA. The thermal degradation of poly (methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes. Polym Adv Technol. 2006;17:272–80.

    Article  CAS  Google Scholar 

  10. Li Z, Jing B, Yu SM. Preparation, structure and properties of CA-SA/montmorillonite composite phase change energy storage materials. New Chem Mater. 2007;35:42–4.

    Google Scholar 

  11. Aktzi N, Nir Y, Wanq D, et al. EVOH/clay nancomposites produced by melt processing. Polym Compos. 2001;22:710–20.

    Article  Google Scholar 

  12. Bourbigot S, Le Bras M, Dabrowski F, et al. PA-6/clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater. 2000;24:201–8.

    Article  CAS  Google Scholar 

  13. Huang J, Zhu DS, Wang XJ. Heat storage density and thermal conductivity of composite phase-change energy storage materials. J Wuhan Univ Technol. 2009;31:34–8.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this research from the National Natural Science Foundation of China (50808042) for youths, Six Projects Sponsoring Talent Summits of Jiangsu Province (1112000053), the Project-sponsored by SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, H., Li, M., Lv, X. et al. Preparation and thermal properties of expanded graphite/paraffin/organic montmorillonite composite phase change material. J Therm Anal Calorim 107, 299–303 (2012). https://doi.org/10.1007/s10973-011-1520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1520-y

Keywords

Navigation