Skip to main content
Log in

Thermal stabilities of some benzaldehyde 2,4-dinitrophenylhydrazones

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal stability of some benzaldehyde 2,4-dinitrophenylhydrazones has been studied using DSC technique. The crystalline solids are thermally stable and start to decompose after melting. Non-isothermal DSC curves, recorded at several heating rates, were used to evaluate the melting properties and the kinetics of thermal decomposition. Both isoconversional and model fitting methods were used for the evaluation of the kinetic parameters. Based on the results of the model free method, a kinetic model was derived and the kinetic parameters were obtained by means of a multivariate non-linear regression. A good agreement between the experimental and fitted data was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sander F, Dott W, Hollender J. Sensitive indoor air monitoring of formaldehyde and other carbonyl compounds using the 2,4-dinitrophenylhydrazine method. Int J Hyg Environ Health. 2000;203(3):275–9.

    Article  Google Scholar 

  2. Dong J-Z, Moldoveanu SC. Gas chromatography-mass spectrometry of carbonyl compounds in cigarette mainstream smoke after derivatization with 2,4-dinitrophenylhydrazine. J Chromatogr A. 2004;1027:25–35.

    Article  CAS  Google Scholar 

  3. Pías JB, Gascó L. Gas-liquid chromatography of 2,4-dinitrophenylhydrazones of carbonyl compounds; retention indices and molecular structure. Chromatographia. 1975;8(6):270–3.

    Article  Google Scholar 

  4. Vogel K, Widmann G. Investigating safety aspects by thermal analysis. J Therm Anal. 1989;35:329–34.

    Article  CAS  Google Scholar 

  5. Pickard JM. Application of rigorous nonlinear regression to the decomposition kinetics of explosives. Thermochim Acta. 1989;149:301–15.

    Article  CAS  Google Scholar 

  6. Grewer Th, Frurip DJ, Harrison BK. Prediction of thermal hazards of chemical reactions. J Loss Prev Proc Ind. 1999;12:391–8.

    Article  Google Scholar 

  7. Li Y, Cheng Y. Investigation on the thermal stability of nitroguanidine by TG/DSC-MS-FTIR and multivariate non-linear regression. J Therm Anal Calorim. 2010;100:949–53.

    Article  CAS  Google Scholar 

  8. Rotaru A, Kropidłowska A, Moanta A, Rotaru P, Segal E. Thermal II decomposition kinetics of some aromatic azomonoethers Part. Non-isothermal study of three liquid crystals in dynamic air atmosphere. J Therm Anal Calorim. 2009;92(1):233–8.

    Article  Google Scholar 

  9. Zadykowicz B, Krzymiński K, Storoniak P, Błażejowski J. Lattice energetics and thermochemistry of phenyl acridine-9-carboxylates and 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulphonates Nitro-, methoxy- or halogen-substituted in the phenyl fragment. J Therm Anal Calorim. 2010;101(2):429–37.

    Article  CAS  Google Scholar 

  10. Musuc AM, Razus D, Oancea D. Thermal stabilities of new synthesized N-methoxypolynitroanilines Derivatives. J Therm Anal Calorim. 2009;98(3):779–84.

    Article  CAS  Google Scholar 

  11. Rotaru A, Moanta A, Popa G, Rotaru P, Segal E. Thermal IV decomposition kinetics of some aromatic azomonoethers Part. Non-isothermal kinetics of 2-allyl-4-((4-(4-methylbenzyloxy)phenyl)diazenyl)phenol in air flow. J Therm Anal Calorim. 2009;97(2):485–91.

    Article  CAS  Google Scholar 

  12. Musuc AM, Razus D, Oancea D. Kinetics of exothermal decomposition of 2-nitrophenylhydrazine and 4-nitrophenylhydrazine using dsc non-isothermal data. J Therm Anal Calorim. 2007;90(3):807–12.

    Article  CAS  Google Scholar 

  13. Musuc AM, Razus D, Oancea D. Kinetic analysis of isothermal decomposition of 2,4-dinitrophenylhydrazine using differential scanning calorimetry. Thermochim Acta. 2006;448:130–5.

    Article  CAS  Google Scholar 

  14. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry applications to a phenol plastic. J Polym Sci. 1963;6C:183–95.

    Google Scholar 

  15. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  16. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70A:487–523.

    Google Scholar 

  17. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57(4):210–21.

    Google Scholar 

  18. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2(3):301–24.

    Article  CAS  Google Scholar 

  19. Atkins PW. Physical chemistry. 6th ed. Oxford: Oxford University Press; 1998. p. 179.

    Google Scholar 

  20. Brown ME. Determination of purity by differential scanning calorimetry (DSC). J Chem Educ. 1979;56:310–6.

    Article  CAS  Google Scholar 

  21. Brown ME. Introduction to thermal analysis, techniques and applications. 2nd ed. London: Kluwer Academic Publisher; 2001. p. 215–26.

    Google Scholar 

  22. Flammersheim H-J, Opfermann JR. Kinetic evaluation of DSC curves for reacting systems with variable stoichiometric compositions. Thermochim Acta. 2002;388:389–400.

    Article  CAS  Google Scholar 

  23. Opfermann J. Kinetic analysis using multivariate non-linear regression I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  24. Budrugeac P. Kinetic of the complex process of thermo-oxidative degradation of poly(vinyl alcohol). J Therm Anal Calorim. 2008;92:291–6.

    Article  CAS  Google Scholar 

  25. Budrugeac P, Segal E. Application of isoconversional and multivariate non-linear regression methods for evaluation of the mechanism and kinetic parameters of an epoxy resin. Polym Degrad Stab. 2008;93:1073–80.

    Article  CAS  Google Scholar 

  26. Budrugeac P. Application of model-free and multivariate nonlinear regression methods for evaluation of the thermo-oxidative endurance of a recent manufactured parchment. J Therm Anal Calorim. 2009;97:443–51.

    Article  CAS  Google Scholar 

  27. Budrugeac P. Theory and practice in the thermoanalytical kinetics of complex processes. Application for the isothermal and non-isothermal thermal degradation of HDPE. Thermochim Acta. 2009. doi: 10.1016/j.tca.2009.12.007.

  28. Becker H. Organicum, Chimie organica practica. 2nd ed. Bucuresti: Ed. stiintifica si enciclopedica; 1982. p. 668–82.

    Google Scholar 

  29. Ranga Reddy S, ManikYamba P. Linear free energy relationship in reactions between diphenyl amine and benzyl bromides. J Chem Sci. 2006;118(3):257–60.

    Article  Google Scholar 

  30. Fukuhara K, Akisue M, Matsuura H. Melting of the all-trans planar modification of triblock oligomers a-n-alkyl-x-n-alkoxyoligo(oxyethylene)s. Chem Lett. 2001;30(8):828–30.

    Article  Google Scholar 

  31. Mandel J. The statistical analysis of experimental data. New York; 1984: Chap. 6–7.

  32. Marinoiu V, Stratula C, Petcu A, Patrascioiu C, Marinescu C. Metode numerice aplicate in ingineria chimica. Bucharest: Ed.Tehnica; 1986.

  33. Brown ME, Dollimore D, Galwey AK. Comprehensive chemical kinetics, vol. 22. Amsterdam: Elsevier; 1980.

    Google Scholar 

  34. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  CAS  Google Scholar 

  35. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.

    Article  CAS  Google Scholar 

  36. Brill TB, James KJ. Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives. Chem Rev. 1993;93:2667–92.

    Article  CAS  Google Scholar 

  37. Duh YS, Lee C, Hsu CC, Hwang DR, Kao CS. Chemical incompatibility of nitrocompounds. J Hazard Mater. 1997;53:183–94.

    Article  CAS  Google Scholar 

  38. Brill TA, James KJ. Thermal decomposition of energetic materials reconciliation of the kinetics and mechanisms of TNT on the time scale from microseconds to hours. J Phys Chem. 1993;97:8759–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanina Pandele Cusu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cusu, J.P., Musuc, A.M. & Oancea, D. Thermal stabilities of some benzaldehyde 2,4-dinitrophenylhydrazones. J Therm Anal Calorim 109, 123–129 (2012). https://doi.org/10.1007/s10973-011-1470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1470-4

Keywords

Navigation