Skip to main content
Log in

Microcalorimetric investigation of the antibacterial activity of curcumin on Staphylococcus aureus coupled with multivariate analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The antibacterial effect of Curcumin on Staphylococcus aureus growth was evaluated by microcalorimetry. The heat flow power–time curves and nine quantitative parameters of the S. aureus growth were applied to investigate the inhibitory effect with Curcumin. By analyzing these curves and some quantitative parameters using multivariate analytical methods, similarity analysis and principal component analysis, the antibacterial activity of Curcumin on S. aureus could be accurately evaluated from the change of the two main parameters, the second exponential growth rate constant k 2 and the maximum heat flow power P 2m . The main two thermal parameters played more important role in the evaluation: at low concentration (0–10.5 μg mL−1), Curcumin hardly influence the growth of S. aureus, while at high concentration (10.5–43.4 μg mL−1) it could notably inhibit the growth. All these illustrated that the antibacterial activity of Curcumin on S. aureus was enhanced with the increase of the concentration of this compound. This study might provide an useful method and idea accurately evaluate the antibacterial effects of Curcumin, which provides some useful methods for evaluate the nature antibacterial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sandel MK, McKillip JL. Virulence and recovery of Staphylococcus aureus relevant to the food industry using improvements on traditional approaches. Food Control. 2004;15(1):5–10.

    Article  Google Scholar 

  2. Brewer MS, Prestat CJ. Consumer attitudes toward food safety issues. J Food Saf. 2002;22(2):67–83.

    Article  Google Scholar 

  3. Arora DS, Kaur J. Antimicrobial activity of spices. Int J Antimicrob Agents. 1999;12(3):257–62.

    Article  CAS  Google Scholar 

  4. Shelef LA. Antimicrobial effects of spices. J Food Saf. 1984;6(1):29–44.

    Article  CAS  Google Scholar 

  5. Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004;94(3):223–53.

    Article  CAS  Google Scholar 

  6. Moleyar V, Narasimham P. Antibacterial activity of essential oil components. Int J Food Microbiol. 1992;16(4):337–42.

    Article  CAS  Google Scholar 

  7. Shan B, Cai YZ, Brooks JD, Corke H. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. J Agric Food Chem. 2007;55(14):5484–90.

    Article  CAS  Google Scholar 

  8. Oonmetta-aree J, Suzuki T, Gasaluck P, Eumkeb G. Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphylococcus aureus. LWT-Food Sci Technol. 2006;39(10):1214–20.

    Article  CAS  Google Scholar 

  9. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK. Turmeric and curcumin: biological actions and medicinal applications. Curr Sci. 2004;87(1):44–53.

    CAS  Google Scholar 

  10. Bhavani Shankar TN, Sreenivasa Murthy V. Effect of turmeric (Curcuma longa) fractions on the growth of some intestinal and pathogenic bacteria in vitro. Indian J Exp Biol. 1979;17(12):1363–6.

    CAS  Google Scholar 

  11. Singh G, Singh OP, Maurya S. Chemical and biocidal investigations on essential oils of some Indian Curcuma species. Prog Cryst Growth Charact. 2002;45(1–2):75–81.

    CAS  Google Scholar 

  12. Khattak S, Saeed ur R, Ullah Shah H, Ahmad W, Ahmad M. Biological effects of indigenous medicinal plants Curcuma longa and Alpinia galanga. Fitoterapia. 2005;76(2):254–7.

    Article  Google Scholar 

  13. Dahl TA, Bilski P, Reszka KJ, Chignell CF. Photocytotoxicity of curcumin. Photochem Photobiol. 1994;59(3):290–4.

    Article  CAS  Google Scholar 

  14. Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK. Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J Agric Food Chem. 2002;50(13):3668–72.

    Article  CAS  Google Scholar 

  15. Cheng J, Weijun K, Yun L, Jiabo W, Haitao W, Qingmiao L, et al. Development and validation of UPLC method for quality control of Curcuma longa Linn.: fast simultaneous quantitation of three curcuminoids. J Pharm Biomed Anal. 2010;53(1):43–9.

    Article  Google Scholar 

  16. Wadsö I. Isothermal microcalorimetry in applied biology. Thermochim Acta. 2002;394(1–2):305–11.

    Article  Google Scholar 

  17. Shen XS, Liu Y, Zhou CP, Zhao RM, Qu SS. Thermochemical studies on the quantity-antibacterial effect relationship of fluoroquinolones. Acta Chim Sin. 2000;58(11):1463–6.

    CAS  Google Scholar 

  18. von Ah U, Wirz D, Daniels AU. Rapid differentiation of methicillin-susceptible Staphylococcus aureus from methicillin-resistant S. aureus and MIC determinations by isothermal microcalorimetry. J Clin Microbiol. 2008;46(6):2083–7.

    Article  Google Scholar 

  19. Wang F, Yao J, Chen H, Chen K, Trebse P, Zaray G. Comparative toxicity of chlorpyrifos and its oxon derivatives to soil microbial activity by combined methods. Chemosphere. 2010;78(3):319–26.

    Article  CAS  Google Scholar 

  20. Kong WJ, Wang JB, Xing XY, Jin C, Xiao XH, Zhao YL, Zhang P, Zang QC, Li ZL. Screening for novel antibacterial agents based on the activities of compounds on metabolism of Escherichia coli: a microcalorimetric study. J Hazard Mater. 2011;185:346–52.

    Article  CAS  Google Scholar 

  21. Yan D, Han YM, Wei L, Xiao XH. Effect of berberine alkaloids on Bifidobacterium adolescentis growth by microcalorimetry. J Therm Anal Calorim. 2009;95:495–9.

    Article  CAS  Google Scholar 

  22. Zhao YL, Yan D, Wang JB, Zhang P, Xiao XH. Anti-fungal effect of berberine on Candida albicans by microcalorimetry with correspondence analysis. J Therm Anal Calorim. 2010;102:49–55.

    Article  CAS  Google Scholar 

  23. Kong WJ, Li ZL, Xiao XH, Zhao YL, Zhang P. Activity of berberine on Shigella dysenteriae investigated by microcalorimetry and multivariate analysis. J Therm Anal Calorim. 2010;102:331–6.

    Article  CAS  Google Scholar 

  24. Zhao YL, Wang JB, Shan LM, Li RS, Yan D, Xiao XH. Activity of ginsenoside Rh2 on the growth of mice splenic lymphocytes investigated by microcalorimetry and factor analysis. J Therm Anal Calorim. 2010. doi:10.1007/s10973-010-1146-5.

  25. Kabanova N, Kazarjan A, Stulova I, Vilu R. Microcalorimetric study of growth of Lactococcus lactis IL1403 at different glucose concentrations in broth. Thermochim Acta. 2009;496(1–2):87–92.

    Article  CAS  Google Scholar 

  26. Gao XH, Guo LH, Li H. Discrimination between natural and cultured gastrodia elata blumes by X-ray diffraction fingerprint patterns and similarity degree of different fingerprint patterns. Chem Res Appl. 2005;17(1):58–60.

    Google Scholar 

  27. Bruce SJ, Tavazzi I, Parisod V, Rezzi S, Kochhar S, Guy PA. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem. 2009;81(9):3285–96.

    Article  CAS  Google Scholar 

  28. Kos G, Lohninger H, Krska R. Development of a method for the determination of Fusarium fungi on corn using mid-infrared spectroscopy with attenuated total reflection and chemometrics. Anal Chem. 2003;75(5):1211–7.

    Article  CAS  Google Scholar 

  29. Kannel PR, Lee S, Kanel SR, Khan SP. Chemometric application in classification and assessment of monitoring locations of an urban river system. Anal Chim Acta. 2007;582(2):390–9.

    Article  CAS  Google Scholar 

  30. López-López A, Rodriguez-Gomez F, Cortes-Delgado A, Montano A, Garrido-Fernandez A. Influence of ripe table olive processing on oil characteristics and composition as determined by chemometrics. J Agric Food Chem. 2009;57(19):8973–81.

    Article  Google Scholar 

  31. Fellenberg K, Hauser NC, Brors B, Neutzner A, Hoheisel JD, Vingron M. Correspondence analysis applied to microarray data. Proc Natl Acad Sci USA. 2001;98(19):10781–6.

    Article  CAS  Google Scholar 

  32. Li X, Liu Y, Wu J, Liang H, Qu S. Microcalorimetric study of Staphylococcus aureus growth affected by selenium compounds. Thermochim Acta. 2002;387(1):57–61.

    Article  CAS  Google Scholar 

  33. Liu Y, Wang GL, Zhao RM. Microcalorimetric study on the growth of Escherichia coli HB101 effected by recombined plasmid. Acta Chim Sin. 2005;63:327–31.

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the support of National Basic Research Program of China (973 Project) (2006CB504703), Mega Project of Science Research for New Drug Development (2009ZX09502-022; 2009ZX10005-017), and Foundation of State Youth Science (30625042). We thank the reviewers for their critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohe Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Jin, C., He, J. et al. Microcalorimetric investigation of the antibacterial activity of curcumin on Staphylococcus aureus coupled with multivariate analysis. J Therm Anal Calorim 109, 395–402 (2012). https://doi.org/10.1007/s10973-011-1428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1428-6

Keywords

Navigation