Skip to main content
Log in

Investigation of copper(II) complexation by glycylglycine using isothermal titration calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Isothermal titration calorimetry (ITC) and potentiometric titration methods have been used to study the process of proton transfer in the copper(II) ion-glycylglycine reaction. The stoichiometry, conditional stability constants, and thermodynamic parameters (ΔG, ΔH, and ΔS) for the complexation reaction were determined using the ITC method. The measurements were carried out at 298.15 K in solutions with a pH of 6 and the ionic strength maintained with 100 mM NaClO4. Carrying out the measurements in buffer solutions of equal pH but different enthalpies of ionization of its components (Mes, Pipes, Cacodylate) enabled determination of the enthalpy of complex formation, independent of the enthalpy of buffer ionization. The number of protons released by glycylglycine on account of complexation of the copper(II) ions was determined from calorimetric and potentiometric measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Behbehani GR, Mirzaie M. A high performance method for thermodynamic study on the binding of copper ion and glycine with Alzheimer’s amyloid β peptide. J Thermal Anal Calorim. 2009;96:631–5.

    Article  Google Scholar 

  2. Kozłowski H, Bal W, Dyba M, Kowalik-Jankowska T. Specific structure-stability relations in metallopeptides. Coord Chem Rev. 1999;184:319–46.

    Article  Google Scholar 

  3. Weder JE, Dillon CT, Hambley TW, Kennedy BJ, Lay PA, Biffin JR, Regtop HL, Davies NM. Copper complexes of non-steroidal anti-inflammatory drugs: an opportunity yet to be realized. Coord Chem Rev. 2002;232:95–126.

    Article  CAS  Google Scholar 

  4. Souaya ER, Ismail EH, Mohamed AA, Milad NE. Preparation, characterization and thermal studies of some transition metal ternary complexes. J Thermal Anal Calorim. 2009;95:253–8.

    Article  CAS  Google Scholar 

  5. Khalil MMH, Ismail EH, Azim SA, Souaya ER. Synthesis, characterization and thermal analysis of ternary complexes of nitrilotriacetic acid and alanine or phenylalanine with some transition metals. J Thermal Anal Calorim. 2010;101:129–35.

    Article  CAS  Google Scholar 

  6. Kharadi GJ, Patel KD. Synthesis, spectroscopic, thermal and biological aspect of mixed ligand copper(II) complexes. J Thermal Anal Calorim. 2009;96:1019–28.

    Article  CAS  Google Scholar 

  7. Scheinberg H. Wilson’s disease and the physiological chemistry of copper. Inorganic chemistry in biology and medicine. ACS Symp Ser. 1980;140:373–80.

    Article  Google Scholar 

  8. Crisponi G, Nurchi VM, Fanni D, Gerosa C, Nemolato S, Faa G. Copper-related diseases: from chemistry to molecular pathology. Coord Chem Rev. 2010;254:876–89.

    Article  CAS  Google Scholar 

  9. Laurie SH, Lund T, Raynor JB. Electronic absorption and electron spin resonance studies on the interaction between the biologically relevant copper(II) glycylglycine and l-histidine complexes with d-penicillamine. J Chem Soc Dalton Trans. 1975;1389–1394.

  10. Facchin G, Kremer E, Baran EJ, Castellano EE, Piro OE, Ellena J, Costa-Filho AJ, Torre MH. Structural characterization of a series of new Cu-dipeptide complexes in solid state and in solution. Polyhedron. 2006;25:2597–604.

    Article  CAS  Google Scholar 

  11. Facchin G, Torre MH, Kremer E, Piro OE, Castellano EE, Baran EJ. Synthesis and characterization of three new Cu(II)-dipeptide complexes. J Inorg Biochem. 2002;89:174–80.

    Article  CAS  Google Scholar 

  12. Kistenmacher TJ, Szalda DJ. Glycylglycinatocopper(II) dihydrate. Acta Crystallogr. 1975;B31:1659–62.

    CAS  Google Scholar 

  13. Aiba H, Yokoyama A, Tanaka H. Copper(II) complexes of l-histydylglycine and l-histydylglycylglicine in aqueous solution. Bull Chem Soc Jap. 1974;47:136–42.

    Article  CAS  Google Scholar 

  14. Sigel H, Martin RB. Coordination properties of the amide bond. Stability and structure of metal ion complexes of peptide and related ligands. Chem Rev. 1982;82:385–426.

    Article  CAS  Google Scholar 

  15. Kim MK, Martell AE. Copper(II) complexes of glycylglycine. Biochemistry. 1964;3:1169–74.

    Article  CAS  Google Scholar 

  16. Wyrzykowski D, Chmurzyński L. Thermodynamics of citrate complexation with Mn2+, Co2+, Ni2+ and Zn2+ ions. J Thermal Anal Calorim. 2010;102:61–4.

    Article  CAS  Google Scholar 

  17. Panuszko A, Bruździak P, Zielkiewicz J, Wyrzykowski D, Stangret J. Effects of urea and trimethylamine-N-oxide on the properties of water and the secondary structure of hen egg white lysozyme. J Phys Chem B. 2009;113:14797–809.

    Article  CAS  Google Scholar 

  18. Brandariz I, Barriada J, Vilarino T, de Vicente MS. Comparison of several calibration procedures for glass electrodes in proton concentration. Monatsh Chem. 2004;135:1475–88.

    Article  CAS  Google Scholar 

  19. Grossoehme NE, Akilesh S, Guerinot M, Wilcox DE. Metal-binding thermodynamics of the histidine-rich sequence from the metal-transport protein IRT1 of Arabidopsis thaliana. Inorg Chem. 2006;45:8500–8.

    Article  CAS  Google Scholar 

  20. Pasquarello A, Petri I, Salmon PS, Parisel O, Car R, Tóth É, Powell DH, Fischer HE, Helm L, Merbach AE. First solvation shell of the Cu(II) aqua ion: evidence for fivefold coordination. Science. 2001;291:856–9.

    Article  CAS  Google Scholar 

  21. Amira S, Spångberg D, Hermansson K. Distorted five-fold coordination of Cu2+(aq) from a Car-Parrinello molecular dynamics simulation. Phys Chem Chem Phys. 2005;7:2874–80.

    Article  CAS  Google Scholar 

  22. Baker BM, Murphy KP. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys J. 1996;71:2049–55.

    Article  CAS  Google Scholar 

  23. Fukada H, Takahashi K. Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride. Proteins. 1998;33:159–66.

    Article  CAS  Google Scholar 

  24. Haq I, O’Brien R, Lagunavicius A, Siksnys V, Ladbury JE. Specific DNA recognition by the type II restriction endonuclease MunI: the effect of pH. Biochemistry. 2001;40:14960–7.

    Article  CAS  Google Scholar 

  25. Goldberg RN, Kishore N, Lennen RM. Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data. 2002;31:231–70.

    Article  CAS  Google Scholar 

  26. Gomez J, Freire E. Thermodynamic mapping of the inhibitor site if the aspartic protease endothiapepsin. J Mol Biol. 1995;252:337–50.

    Article  CAS  Google Scholar 

  27. Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RMM. Hydrogen ion buffers for biological research. Biochemistry. 1966;5:467–77.

    Article  CAS  Google Scholar 

  28. Azab HA, Orabi AS, El-Salam ETA. Role of biologically important zwitterionic buffer secondary ligands on the stability of the mixed-ligand complexes of divalent metal ions and adenosine 5′-Mono-, 5′-Di-, and 5′-Triphosphate. J Chem Eng Data. 2001;46:346–54.

    Article  CAS  Google Scholar 

  29. Hernick M, Gennadios HA, Whittington DA, Rusche KM, Christianson DW, Fierke CA. UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase functions through a general acid-base catalyst pair mechanism. J Biol Chem. 2005;280:16969–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Polish Ministry of Science and Higher Education under grant DS/8230-4-0088-10 and N N204 136238.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wyrzykowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyrzykowski, D., Zarzeczańska, D., Jacewicz, D. et al. Investigation of copper(II) complexation by glycylglycine using isothermal titration calorimetry. J Therm Anal Calorim 105, 1043–1047 (2011). https://doi.org/10.1007/s10973-011-1426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1426-8

Keywords

Navigation